Band engineering of Ni1−xMgxO alloys for photocathodes of high efficiency dye-sensitized solar cells

Density functional theory calculations were carried out for Ni1−xMgxO alloys using both GGA+U method and hybrid exchange-correlation functional HSE06. We find that the band gap of Ni1−xMgxO is a nonlinear function of MgO concentration with a strong bowing behavior at high Mg content. Band edge alignment is determined using heterojunction superlattice models. The valence-band-maximum of Ni1−xMgxO is shown to be tunable within a range of 0.90 eV. By comparing with the highest-occupied-molecular-orbital levels of some of the most widely used dye molecules, we propose that Ni1−xMgxO is a promising alternate to replace NiO photocathode in dye-sensitized solar cells with an enhanced open-circuit voltage and transparency of cathode films.

[1]  Ching,et al.  Self-consistent band structures, charge distributions, and optical-absorption spectra in MgO, alpha -Al2O3, and MgAl2O4. , 1991, Physical review. B, Condensed matter.

[2]  J. Honig,et al.  Localized charge carrier transport in pure single crystals of NiO , 1978 .

[3]  Li-ping Zhu,et al.  Preparation and band-gap modulation in MgxNi1 − xO thin films as a function of Mg contents , 2011 .

[4]  Tomas Edvinsson,et al.  Design of an organic chromophore for p-type dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[5]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[6]  A. Shluger,et al.  Mg clusters on MgO surfaces: study of the nucleation mechanism with MIES and ab initio calculations , 1999 .

[7]  U. Bach,et al.  Highly efficient photocathodes for dye-sensitized tandem solar cells. , 2010, Nature materials.

[8]  Hideo Hosono,et al.  Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO , 2003 .

[9]  Shinobu Fujihara,et al.  Fabrication and Dye-Sensitized Solar Cell Performance of Nanostructured NiO/Coumarin 343 Photocathodes , 2008 .

[10]  Minoru Obara,et al.  Preparation and characteristics of nickel oxide thin film by controlled growth with sequential surface chemical reactions , 1996 .

[11]  J. Mares,et al.  Deep-ultraviolet photodetectors from epitaxially grown NixMg1−xO , 2010 .

[12]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[13]  M. Mokhtar,et al.  Electrical properties of pure and Li2O-doped NiO/MgO system , 2004 .

[14]  Zhenghong Lu,et al.  Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films , 2010 .

[15]  C. Osburn,et al.  Electrical Properties of Single Crystals, Bicrystals, and Polycrystals of MgO , 1971 .

[16]  H. Tuller,et al.  Electronic Conductivity of Single Crystalline Magnesium Oxide , 1980 .

[17]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[18]  W. Hwang,et al.  Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering , 2002 .

[19]  Seungwu Han,et al.  Hybrid functional study on structural and electronic properties of oxides , 2011 .

[20]  Keu-Hong Kim,et al.  Electrical conductivity of nickel oxide-magnesium oxide single crystals , 1973 .

[21]  Hungru Chen,et al.  Nature of the hole states in Li-doped NiO , 2012 .

[22]  M. Tardío,et al.  p -type semiconducting properties in lithium-doped MgO single crystals , 2002, cond-mat/0201502.

[23]  A. Zunger,et al.  Interfacial atomic structure and band offsets at semiconductor heterojunctions , 1992 .

[24]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[25]  A. Zunger,et al.  Origins of the doping asymmetry in oxides : hole doping in NiO versus electron doping in ZnO , 2007 .

[26]  Shinzo Takata,et al.  Transparent conducting p-type NiO thin films prepared by magnetron sputtering , 1993 .

[27]  Robert Kerr,et al.  Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications , 2008, Nanotechnology.

[28]  M. P. Dare-Edwards,et al.  Photoelectrochemistry of nickel(II) oxide , 1981 .

[29]  Minko Balkanski,et al.  Semiconductor physics and applications , 2000 .

[30]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[31]  A. Kunz,et al.  Electronic structure of NiO , 1981 .

[32]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[33]  J. Mares,et al.  Optical and structural properties of NiMgO thin films formed by sol–gel spin coating , 2012 .

[34]  Poul Georg Moses,et al.  Band bowing and band alignment in InGaN alloys , 2010 .

[35]  Z. Ye,et al.  Valence band offset of n-ZnO/p-MgxNi1−xO heterojunction measured by x-ray photoelectron spectroscopy , 2012 .

[36]  Zhengjun Zhang,et al.  NiO films consisting of vertically aligned cone-shaped NiO rods , 2006 .

[37]  N. Mironova,et al.  Composition dependence of the lattice parameter in solid solutions , 1998 .

[38]  A. Enders,et al.  Growth, structure, electronic, and magnetic properties of MgO/Fe(001) bilayers and Fe/MgO/Fe(001) trilayers , 2001 .

[39]  Hiroaki Yanagida,et al.  Electrical conduction and effective mass of a hole in single-crystal NiO , 1986 .

[40]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[41]  M. Kitao,et al.  Preparation and Electrochromic Properties of RF-Sputtered NiOx Films Prepared in Ar/O2/H2 Atmosphere , 1994 .

[42]  W. Spear,et al.  Hole Transport in Pure NiO Crystals , 1973 .

[43]  N. Mironova,et al.  X-ray absorption spectroscopy study of NicMg1-cO solid solutions on the Ni K edge , 1995 .

[44]  Charles Howard Henry,et al.  Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells , 1980 .

[45]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[46]  David Adler,et al.  Electrical and Optical Properties of Narrow-Band Materials , 1970 .

[47]  D. Shen,et al.  MgNiO-based metal–semiconductor– metal ultraviolet photodetector , 2009 .