Genome-wide annotation and analysis of zebra finch microRNA repertoire reveal sex-biased expression

[1]  T. Tuschl,et al.  Genome-wide annotation and analysis of zebra finch microRNA repertoire reveal sex-biased expression , 2012, BMC Genomics.

[2]  Shahar Alon,et al.  Systematic identification of edited microRNAs in the human brain , 2012, Genome research.

[3]  Jinxing Lin,et al.  Transcriptome-wide identification and characterization of miRNAs from Pinus densata , 2012, BMC Genomics.

[4]  B. Nickel,et al.  Annotation of primate miRNAs by high throughput sequencing of small RNA libraries , 2012, BMC Genomics.

[5]  Kenneth S. Kosik,et al.  Deep annotation of mouse iso-miR and iso-moR variation , 2012, Nucleic acids research.

[6]  Steve Horvath,et al.  Molecular Microcircuitry Underlies Functional Specification in a Basal Ganglia Circuit Dedicated to Vocal Learning , 2012, Neuron.

[7]  S. Wyman,et al.  Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. , 2011, Genome research.

[8]  A. Milosavljevic,et al.  Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain , 2011, BMC Genomics.

[9]  Ravi Sachidanandam,et al.  Kinetic Analysis Reveals the Fate of a MicroRNA following Target Regulation in Mammalian Cells , 2011, Current Biology.

[10]  Doron Betel,et al.  Widespread regulatory activity of vertebrate microRNA* species. , 2011, RNA.

[11]  Z. Weng,et al.  Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. , 2011, Genome research.

[12]  E. Lai,et al.  Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates , 2010, Cell cycle.

[13]  David Galas,et al.  Complexity of the microRNA repertoire revealed by next-generation sequencing. , 2010, RNA.

[14]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[15]  Y. Hayashizaki,et al.  A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. , 2010, Genome research.

[16]  Selene L. Fernandez-Valverde,et al.  Dynamic isomiR regulation in Drosophila development. , 2010, RNA.

[17]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[18]  Xavier Estivill,et al.  A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing , 2010, Nucleic acids research.

[19]  David W. Taylor,et al.  A Novel miRNA Processing Pathway Independent of Dicer Requires Argonaute2 Catalytic Activity , 2010, Science.

[20]  C. Nusbaum,et al.  Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. , 2010, Genes & development.

[21]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[22]  Albert J. Vilella,et al.  The genome of a songbird , 2010, Nature.

[23]  A. Arnold,et al.  Sex bias and dosage compensation in the zebra finch versus chicken genomes: general and specialized patterns among birds. , 2010, Genome research.

[24]  H. Sang,et al.  Somatic sex identity is cell-autonomous in the chicken , 2010, Nature.

[25]  Richard Mooney,et al.  Neural mechanisms for learned birdsong. , 2009, Learning & memory.

[26]  Sathyanarayanan V. Puthanveettil,et al.  Characterization of Small RNAs in Aplysia Reveals a Role for miR-124 in Constraining Synaptic Plasticity through CREB , 2009, Neuron.

[27]  J. Neilson,et al.  Zcchc11-dependent uridylation of microRNA directs cytokine expression , 2009, Nature Cell Biology.

[28]  J. Mank,et al.  All dosage compensation is local: Gene-by-gene regulation of sex-biased expression on the chicken Z chromosome , 2009, Heredity.

[29]  R. Gregory,et al.  Many roads to maturity: microRNA biogenesis pathways and their regulation , 2009, Nature Cell Biology.

[30]  T. Katoh,et al.  Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. , 2009, Genes & development.

[31]  Olivier Voinnet,et al.  Revisiting the principles of microRNA target recognition and mode of action , 2009, Nature Reviews Molecular Cell Biology.

[32]  Lan Jin,et al.  Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. , 2009, Nature structural & molecular biology.

[33]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[34]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[35]  Claudio V. Mello,et al.  Birdsong “Transcriptomics”: Neurochemical Specializations of the Oscine Song System , 2008, PloS one.

[36]  A. Arnold,et al.  A bird's-eye view of sex chromosome dosage compensation. , 2008, Annual review of genomics and human genetics.

[37]  Robert J. Moore,et al.  A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. , 2008, Genome research.

[38]  Ryan D. Morin,et al.  Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. , 2008, Genome research.

[39]  Lei Liu,et al.  The Songbird Neurogenomics (SoNG) Initiative: Community-based tools and strategies for study of brain gene function and evolution , 2008, BMC Genomics.

[40]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[41]  Eugene Berezikov,et al.  Mammalian mirtron genes. , 2007, Molecular cell.

[42]  A. Arnold,et al.  Regional differences in dosage compensation on the chicken Z chromosome , 2007, Genome Biology.

[43]  K. Kultima,et al.  Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes , 2007, BMC Biology.

[44]  E. Lai,et al.  The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila , 2007, Cell.

[45]  D. Bartel,et al.  Intronic microRNA precursors that bypass Drosha processing , 2007, Nature.

[46]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[47]  Terry Gaasterland,et al.  Genomic resources for songbird research and their use in characterizing gene expression during brain development , 2007, Proceedings of the National Academy of Sciences.

[48]  A. Arnold,et al.  Dosage compensation is less effective in birds than in mammals , 2007, Journal of biology.

[49]  J. Wade,et al.  Sexually dimorphic SCAMP1 expression in the forebrain motor pathway for song production of juvenile zebra finches , 2007, Developmental neurobiology.

[50]  A. Hatzigeorgiou,et al.  Redirection of Silencing Targets by Adenosine-to-Inosine Editing of miRNAs , 2007, Science.

[51]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[52]  Piero Carninci,et al.  A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes , 2006, Proceedings of the National Academy of Sciences.

[53]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[54]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[55]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[56]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[57]  S. Bottjer,et al.  An immunohistochemical and pathway tracing study of the striatopallidal organization of area X in the male zebra finch , 2004, The Journal of comparative neurology.

[58]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[59]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[60]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[61]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[62]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[63]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[64]  A. Bird,et al.  Dosage compensation in birds , 2001, Current Biology.

[65]  A. Arnold,et al.  Sexual differentiation of the zebra finch song system: positive evidence, negative evidence, null hypotheses, and a paradigm shift. , 1997, Journal of neurobiology.

[66]  P. Baverstock,et al.  A sex-linked enzyme in birds—Z-chromosome conservation but no dosage compensation , 1982, Nature.

[67]  A. Arnold,et al.  Sexual dimorphism in vocal control areas of the songbird brain. , 1976, Science.

[68]  P. Seeburg,et al.  Modulation of microRNA processing and expression through RNA editing by ADAR deaminases , 2006, Nature Structural &Molecular Biology.

[69]  Gang Wang,et al.  ConiferEST: an integrated bioinformatics system for data reprocessing and mining of conifer expressed sequence tags (ESTs) , 2007, BMC Genomics.

[70]  A. Bird,et al.  Female-specific hyperacetylation of histone H4 in the chicken Z chromosome , 2005, Chromosome Research.

[71]  T. Hori,et al.  Absence of Z-chromosome inactivation for five genes in male chickens , 2004, Chromosome Research.

[72]  Sam Griffiths-Jones,et al.  The microRNA Registry , 2004, Nucleic Acids Res..

[73]  P. Kuhl,et al.  Birdsong and human speech: common themes and mechanisms. , 1999, Annual review of neuroscience.

[74]  M. Hauser,et al.  The design of animal communication , 1999 .