Moonshine: The First Quarter Century and Beyond: Borcherds' Proof of the Conway-Norton Conjecture

We give a summary of R. Borcherds' solution (with some modifications) to the following part of the Conway-Norton conjectures: Given the Monster simple group and Frenkel-Lepowsky-Meurman's moonshine module for the group, prove the equality between the graded characters of the elements of the Monster group acting on the module (i.e., the McKay-Thompson series) and the modular functions provided by Conway and Norton. The equality is established using the homology of a certain subalgebra of the monster Lie algebra, and the Euler-Poincare identity.

[1]  J. Lepowsky,et al.  Vertex Operator Algebras and the Monster , 2011 .

[2]  Minoru Wakimoto Infinite-Dimensional Lie Algebras , 2000 .

[3]  R. Borcherds What is moonshine , 1998, math/9809110.

[4]  Elizabeth Jurisich Generalized Kac-Moody Lie algebras, free Lie algebras and the structure of the Monster Lie algebra , 1998, 1311.3258.

[5]  Charles R. Ferenbaugh,et al.  Replication Formulae forn∣h-Type Hauptmoduls , 1996 .

[6]  S. Norton,et al.  Rational Hauptmoduls are Replicable , 1995, Canadian Journal of Mathematics.

[7]  R. Borcherds A Characterization of Generalized Kac-Moody Algebras , 1995 .

[8]  H. Nakajima Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , 1994 .

[9]  Haisheng Li Symmetric invariant bilinear forms on vertex operator algebras , 1994 .

[10]  J. Lepowsky,et al.  Realizations of the Monster Lie algebra , 1994, hep-th/9408037.

[11]  James Lepowsky,et al.  On Axiomatic Approaches to Vertex Operator Algebras and Modules , 1993 .

[12]  Richard E. Borcherds,et al.  Monstrous moonshine and monstrous Lie superalgebras , 1992 .

[13]  Lishi Liu Kostant's formula for Kac-Moody Lie algebras , 1992 .

[14]  R. Borcherds Central extensions of generalized Kac-Moody algebras , 1991 .

[15]  R. Borcherds Generalized Kac-Moody algebras , 1988 .

[16]  R. Borcherds Vertex algebras, Kac-Moody algebras, and the Monster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[17]  J. Lepowsky,et al.  A natural representation of the Fischer-Griess Monster with the modular function J as character. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Lepowsky,et al.  Lie algebra homology and the Macdonald-Kac formulas , 1976 .

[19]  Donald C. Knutson,et al.  Lambda-Rings and the Representation Theory of the Symmetric Group , 1973 .

[20]  P. Goddard,et al.  Compatibility of the Dual Pomeron with Unitarity and the Absence of Ghosts in the Dual Resonance Model , 1972 .

[21]  R. Moody Lie algebras associated with generalized Cartan matrices , 1967 .

[22]  Seok-Jin Kang Generalized Kac-Moody algebras and the modular functionj , 1994 .

[23]  R. Borcherds Sporadic Groups and String Theory , 1994 .

[24]  James Lepowsky,et al.  Generalized vertex algebras and relative vertex operators , 1993 .

[25]  H. Simmons A Friendly Giant. , 1981 .

[26]  J. Lepowsky,et al.  Generalized Verma modules, loop space cohomology and MacDonald-type identities , 1979 .