Viscosity analysis on the spatially homogeneous Boltzmann equation

In this paper we study the existence and uniqueness of the solution to the viscosity equation ∂tf = δΔf + Q(f , f ) with collision kernel B(|v − v∗|, ω) = |v − v∗| γ b(cos θ )a nd δ> 0 small enough; especially show that the solution f can approach the one of unperturbed equation in L 1 -norm while δ goes to 0. Our method mainly relies on the interpolation inequalities and the decomposition of Q + .

[1]  T. Elmroth Global boundedness of moments of solutions of the Boltzmann equation for forces of infinite range , 1983 .

[2]  B. Wennberg Entropy dissipation and moment production for the Boltzmann equation , 1997 .

[3]  Leif Arkeryd,et al.  Intermolecular forces of infinite range and the Boltzmann equation , 1981 .

[4]  L. Arkeryd L∞ estimates for the space-homogeneous Boltzmann equation , 1983 .

[5]  T. Goudon On boltzmann equations and fokker—planck asymptotics: Influence of grazing collisions , 1997 .

[6]  C. Villani,et al.  On the trend to global equilibrium in spatially inhomogeneous entropy‐dissipating systems: The linear Fokker‐Planck equation , 2001 .

[7]  Xuguang Lu,et al.  A Direct Method for the Regularity of the Gain Term in the Boltzmann Equation , 1998 .

[8]  Cl'ement Mouhot Rate of Convergence to Equilibrium for the Spatially Homogeneous Boltzmann Equation with Hard Potentials , 2006 .

[9]  Irene M. Gamba,et al.  On the Boltzmann Equation for Diffusively Excited Granular Media , 2004 .

[10]  Laurent Desvillettes,et al.  A proof of the smoothing properties of the positive part of Boltzmann's kernel , 1998 .

[11]  Cl'ement Mouhot,et al.  Regularity Theory for the Spatially Homogeneous Boltzmann Equation with Cut-Off , 2004, math/0607539.

[12]  Laurent Desvillettes,et al.  Some applications of the method of moments for the homogeneous Boltzmann and Kac equations , 1993 .

[13]  Leif Arkeryd,et al.  On the Boltzmann equation , 1972 .

[14]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[15]  Leif Arkeryd,et al.  Stability in L1 for the spatially homogenous Boltzmann equation , 1988 .

[16]  Tommy Gustafsson,et al.  Lp-estimates for the nonlinear spatially homogeneous Boltzmann equation , 1986 .

[17]  P. Lions,et al.  On the Fokker-Planck-Boltzmann equation , 1988 .

[18]  P. Lions,et al.  Compactness in Boltzmann’s equation via Fourier integral operators and applications. III , 1994 .

[19]  Tommy Gustafsson,et al.  Global Lp-properties for the spatially homogeneous Boltzmann equation , 1988 .

[20]  Stéphane Mischler,et al.  On the spatially homogeneous Boltzmann equation , 1999 .