Evolution of eIF4E-Interacting Proteins

[1]  E. Izaurralde,et al.  Mextli proteins use both canonical bipartite and novel tripartite binding modes to form eIF4E complexes that display differential sensitivity to 4E-BP regulation , 2015, Genes & development.

[2]  S. Rolland,et al.  The loss of LRPPRC function induces the mitochondrial unfolded protein response , 2015, Aging.

[3]  E. Papadopoulos,et al.  Molecular mechanism of the dual activity of 4EGI-1: Dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1 , 2015, Proceedings of the National Academy of Sciences.

[4]  E. Martínez-Salas,et al.  Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control , 2015, Biomolecules.

[5]  E. Izaurralde,et al.  Molecular architecture of 4E-BP translational inhibitors bound to eIF4E. , 2015, Molecular cell.

[6]  R. Jagus,et al.  The alveolate translation initiation factor 4E family reveals a custom toolkit for translational control in core dinoflagellates , 2015, BMC Evolutionary Biology.

[7]  L. Kay,et al.  Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch , 2014, Nature.

[8]  T. Alain,et al.  The ever-evolving role of mTOR in translation. , 2014, Seminars in cell & developmental biology.

[9]  T. Cavalier-smith,et al.  Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. , 2014, Molecular phylogenetics and evolution.

[10]  V. Simon,et al.  Evolution of plant eukaryotic initiation factor 4E (eIF4E) and potyvirus genome-linked protein (VPg): a game of mirrors impacting resistance spectrum and durability. , 2014, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[11]  E. Izaurralde,et al.  4E-BPs require non-canonical 4E-binding motifs and a lateral surface of eIF4E to repress translation , 2014, Nature Communications.

[12]  N. Standart,et al.  eIF4E-binding proteins: new factors, new locations, new roles. , 2014, Biochemical Society transactions.

[13]  R. E. Luna,et al.  Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G , 2014, Proceedings of the National Academy of Sciences.

[14]  Samantha Gbur,et al.  Non-Canonical Roles for Yorkie and Drosophila Inhibitor of Apoptosis 1 in Epithelial Tube Size Control , 2014, PloS one.

[15]  S. Baldauf,et al.  An Alternative Root for the Eukaryote Tree of Life , 2014, Current Biology.

[16]  N. Standart,et al.  Human 4E-T represses translation of bound mRNAs and enhances microRNA-mediated silencing , 2013, Nucleic acids research.

[17]  N. Sonenberg,et al.  Interaction of the eukaryotic initiation factor 4E with 4E-BP2 at a dynamic bipartite interface. , 2013, Structure.

[18]  M. Torres,et al.  Biochemistry of the tale transcription factors PREP, MEIS, and PBX in vertebrates , 2013, Developmental dynamics : an official publication of the American Association of Anatomists.

[19]  N. Standart,et al.  Investigating the Consequences of eIF4E2 (4EHP) Interaction with 4E-Transporter on Its Cellular Distribution in HeLa Cells , 2013, PloS one.

[20]  J. Morales,et al.  Tracking a refined eIF4E-binding motif reveals Angel1 as a new partner of eIF4E , 2013, Nucleic acids research.

[21]  N. Sonenberg,et al.  Mextli Is a Novel Eukaryotic Translation Initiation Factor 4E-Binding Protein That Promotes Translation in Drosophila melanogaster , 2013, Molecular and Cellular Biology.

[22]  K. Borden,et al.  eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition , 2013, Proceedings of the National Academy of Sciences.

[23]  P. Tompa Intrinsically disordered proteins: a 10-year recap. , 2012, Trends in biochemical sciences.

[24]  G. Hernández On the Emergence and Evolution of the Eukaryotic Translation Apparatus , 2012 .

[25]  F. Bono,et al.  Crystal structure of a minimal eIF4E-Cup complex reveals a general mechanism of eIF4E regulation in translational repression. , 2012, RNA.

[26]  N. Sonenberg,et al.  Eukaryotic initiation factor 4E-3 is essential for meiotic chromosome segregation, cytokinesis and male fertility in Drosophila , 2012, Development.

[27]  A. Gingras,et al.  A Novel 4EHP-GIGYF2 Translational Repressor Complex Is Essential for Mammalian Development , 2012, Molecular and Cellular Biology.

[28]  R. Jagus,et al.  Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists , 2012, Comparative and functional genomics.

[29]  N. Sonenberg,et al.  The Distribution of eIF4E-Family Members across Insecta , 2012, Comparative and functional genomics.

[30]  Jon R Lorsch,et al.  A mechanistic overview of translation initiation in eukaryotes , 2012, Nature Structural &Molecular Biology.

[31]  T. Preiss,et al.  On the Diversification of the Translation Apparatus across Eukaryotes , 2012, Comparative and functional genomics.

[32]  K. Browning,et al.  The eIF4F and eIFiso4F Complexes of Plants: An Evolutionary Perspective , 2012, Comparative and functional genomics.

[33]  D. Sabatini,et al.  A unifying model for mTORC1-mediated regulation of mRNA translation , 2012, Nature.

[34]  I. Goodfellow The genome-linked protein VPg of vertebrate viruses - a multifaceted protein. , 2011, Current opinion in virology.

[35]  J. Laliberté,et al.  The genome-linked protein VPg of plant viruses-a protein with many partners. , 2011, Current opinion in virology.

[36]  A. Hinnebusch,et al.  Molecular Mechanism of Scanning and Start Codon Selection in Eukaryotes , 2011, Microbiology and Molecular Reviews.

[37]  H. Ashe,et al.  Patterning of the Drosophila oocyte by a sequential translation repression program involving the d4EHP and Belle translational repressors , 2011, RNA biology.

[38]  G. Wagner,et al.  A novel 4E-interacting protein in Leishmania is involved in stage-specific translation pathways , 2011, Nucleic acids research.

[39]  S. Vajda,et al.  Blocking eIF4E-eIF4G Interaction as a Strategy To Impair Coronavirus Replication , 2011, Journal of Virology.

[40]  N. Standart,et al.  The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. , 2011, Molecular and biochemical parasitology.

[41]  P. Londei,et al.  Translation initiation in Archaea: conserved and domain-specific features. , 2011, Biochemical Society transactions.

[42]  S. Vajda,et al.  Reversing chemoresistance by small molecule inhibition of the translation initiation complex eIF4F , 2010, Proceedings of the National Academy of Sciences.

[43]  Patrick Cormier,et al.  The translational repressor 4E-BP called to order by eIF4E: new structural insights by SAXS , 2010, Nucleic acids research.

[44]  N. Sonenberg,et al.  Dissecting the role of mTOR: lessons from mTOR inhibitors. , 2010, Biochimica et biophysica acta.

[45]  P. Lasko,et al.  Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. , 2010, Trends in biochemical sciences.

[46]  R. Jackson,et al.  The mechanism of eukaryotic translation initiation and principles of its regulation , 2010, Nature Reviews Molecular Cell Biology.

[47]  Lesilee S. Rose,et al.  An eIF4E-binding protein regulates katanin protein levels in C. elegans embryos , 2009, The Journal of cell biology.

[48]  Miquel Pons,et al.  Dynamic interactions of proteins in complex networks: a more structured view , 2009, The FEBS journal.

[49]  P. Londei,et al.  Begin at the beginning: evolution of translational initiation. , 2009, Research in microbiology.

[50]  J. Blenis,et al.  Molecular mechanisms of mTOR-mediated translational control , 2009, Nature Reviews Molecular Cell Biology.

[51]  P. Thibault,et al.  Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export‐competent RNP , 2009, The EMBO journal.

[52]  F. Blasi,et al.  Cytoplasmic Prep1 Interacts with 4EHP Inhibiting Hoxb4 Translation , 2009, PloS one.

[53]  Shintaro Iwasaki,et al.  Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. , 2009, Molecular cell.

[54]  G. Hernández On the origin of the cap-dependent initiation of translation in eukaryotes. , 2009, Trends in biochemical sciences.

[55]  C. Desplan,et al.  Heads and tails: evolution of antero-posterior patterning in insects. , 2009, Biochimica et biophysica acta.

[56]  J. Morales,et al.  A Variant Mimicking Hyperphosphorylated 4E-BP Inhibits Protein Synthesis in a Sea Urchin Cell-Free, Cap-Dependent Translation System , 2009, PloS one.

[57]  R. Rhoads eIF4E: New Family Members, New Binding Partners, New Roles* , 2009, The Journal of Biological Chemistry.

[58]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[59]  Tien-Hsien Chang,et al.  The current understanding of Ded1p/DDX3 homologs from yeast to human , 2009, RNA biology.

[60]  N. Sonenberg,et al.  Requirement of RNA Binding of Mammalian Eukaryotic Translation Initiation Factor 4GI (eIF4GI) for Efficient Interaction of eIF4E with the mRNA Cap , 2008, Molecular and Cellular Biology.

[61]  K. Tomoo,et al.  Importance of C‐terminal flexible region of 4E‐binding protein in binding with eukaryotic initiation factor 4E , 2008, FEBS letters.

[62]  N. Sonenberg,et al.  The Fragile X Syndrome Protein Represses Activity-Dependent Translation through CYFIP1, a New 4E-BP , 2008, Cell.

[63]  C. Wiese,et al.  Xenopus TACC3/maskin is not required for microtubule stability but is required for anchoring microtubules at the centrosome. , 2008, Molecular biology of the cell.

[64]  N. Standart,et al.  Translational control in early development: CPEB, P-bodies and germinal granules. , 2008, Biochemical Society transactions.

[65]  A. Evsikov,et al.  Evolutionary origin and phylogenetic analysis of the novel oocyte-specific eukaryotic translation initiation factor 4E in Tetrapoda , 2008, Development Genes and Evolution.

[66]  N. Sonenberg eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. , 2008, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[67]  G. Hernández Was the initiation of translation in early eukaryotes IRES-driven? , 2008, Trends in biochemical sciences.

[68]  J. Shih,et al.  Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein , 2008, Oncogene.

[69]  J. Lee,et al.  Translation initiation factor 4E (eIF4E) is regulated by cell death inhibitor, Diap1. , 2007, Molecules and cells.

[70]  D. Weil,et al.  CPEB Interacts with an Ovary-specific eIF4E and 4E-T in Early Xenopus Oocytes* , 2007, Journal of Biological Chemistry.

[71]  A. Hinnebusch,et al.  New modes of translational control in development, behavior, and disease. , 2007, Molecular cell.

[72]  B. Rinkevich,et al.  The DDX3 subfamily of the DEAD box helicases: divergent roles as unveiled by studying different organisms and in vitro assays. , 2007, Current medicinal chemistry.

[73]  A. Degterev,et al.  Small-Molecule Inhibition of the Interaction between the Translation Initiation Factors eIF4E and eIF4G , 2007, Cell.

[74]  M. Ashe,et al.  Regulation of translation initiation by the yeast eIF4E binding proteins is required for the pseudohyphal response , 2006, Yeast.

[75]  N. Sonenberg,et al.  Cap-Dependent Translational Inhibition Establishes Two Opposing Morphogen Gradients in Drosophila Embryos , 2006, Current Biology.

[76]  Claude Desplan,et al.  A caudal mRNA gradient controls posterior development in the wasp Nasonia , 2006, Development.

[77]  Minhan Ka,et al.  Identification of Translational Regulation Target Genes during Filamentous Growth in Saccharomyces cerevisiae: Regulatory Role of Caf20 and Dhh1 , 2006, Eukaryotic Cell.

[78]  J. Richter,et al.  Translational Control by Neuroguidin, a Eukaryotic Initiation Factor 4E and CPEB Binding Protein , 2006, Molecular and Cellular Biology.

[79]  S. Mohammed,et al.  Quantitative proteomics identifies Gemin5, a scaffolding protein involved in ribonucleoprotein assembly, as a novel partner for eukaryotic initiation factor 4E. , 2006, Journal of proteome research.

[80]  Jordi Garcia-Fernàndez,et al.  The genesis and evolution of homeobox gene clusters , 2005, Nature Reviews Genetics.

[81]  F. Piccioni,et al.  A Cup Full of Functions , 2005, RNA biology.

[82]  K. Borden,et al.  Homeodomain proteins and eukaryotic translation initiation factor 4E (eIF4E): an unexpected relationship. , 2005, Histology and histopathology.

[83]  D. Maeder,et al.  Phylogenetic analysis of eIF4E-family members , 2005, BMC Evolutionary Biology.

[84]  A. Hyman,et al.  Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis , 2005, The Journal of cell biology.

[85]  I. Vernos,et al.  Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis , 2005, The Journal of cell biology.

[86]  N. Sonenberg,et al.  A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay , 2005, The Journal of cell biology.

[87]  A. McGregor How to get ahead: the origin, evolution and function of bicoid , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[88]  A. Teleman,et al.  4E-BP functions as a metabolic brake used under stress conditions but not during normal growth. , 2005, Genes & development.

[89]  N. Sonenberg,et al.  Starvation and oxidative stress resistance in Drosophila are mediated through the eIF4E-binding protein, d4E-BP. , 2005, Genes & development.

[90]  G. Hernández,et al.  Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families , 2005, Mechanisms of Development.

[91]  P. Dobrzyn,et al.  The Xenopus TACC homologue, maskin, functions in mitotic spindle assembly. , 2005, Molecular biology of the cell.

[92]  N. Sonenberg,et al.  A New Paradigm for Translational Control: Inhibition via 5′-3′ mRNA Tethering by Bicoid and the eIF4E Cognate 4EHP , 2005, Cell.

[93]  Ching C. Wang,et al.  Identification in the Ancient Protist Giardia lamblia of Two Eukaryotic Translation Initiation Factor 4E Homologues with Distinctive Functions , 2005, Eukaryotic Cell.

[94]  J. M. Sierra,et al.  Functional analysis of seven genes encoding eight translation initiation factor 4E (eIF4E) isoforms in Drosophila , 2005, Mechanisms of Development.

[95]  P. Londei Evolution of translational initiation: new insights from the archaea. , 2005, FEMS microbiology reviews.

[96]  H. Dyson,et al.  Intrinsically unstructured proteins and their functions , 2005, Nature Reviews Molecular Cell Biology.

[97]  B. S. Laursen,et al.  Initiation of Protein Synthesis in Bacteria , 2005, Microbiology and Molecular Biology Reviews.

[98]  N. Sonenberg,et al.  Regulation of cap-dependent translation by eIF4E inhibitory proteins , 2005, Nature.

[99]  A. Kentsis,et al.  Eukaryotic Translation Initiation Factor 4E Activity Is Modulated by HOXA9 at Multiple Levels , 2005, Molecular and Cellular Biology.

[100]  P. McPherson,et al.  Two WXXF‐based motifs in NECAPs define the specificity of accessory protein binding to AP‐1 and AP‐2 , 2004, The EMBO journal.

[101]  A. Prochiantz,et al.  Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[102]  S. Fahrenkrug,et al.  Two Zebrafish eIF4E Family Members Are Differentially Expressed and Functionally Divergent* , 2004, Journal of Biological Chemistry.

[103]  J. de la Cruz,et al.  A membrane transport defect leads to a rapid attenuation of translation initiation in Saccharomyces cerevisiae. , 2004, Molecular cell.

[104]  C. Smibert,et al.  Drosophila Cup is an eIF4E‐binding protein that functions in Smaug‐mediated translational repression , 2004, The EMBO journal.

[105]  G. Wagner,et al.  Ribosome Loading onto the mRNA Cap Is Driven by Conformational Coupling between eIF4G and eIF4E , 2003, Cell.

[106]  N. Sonenberg,et al.  eIF4E/4E-BP dissociation and 4E-BP degradation in the first mitotic division of the sea urchin embryo. , 2003, Developmental biology.

[107]  K. Borden,et al.  The proline‐rich homeodomain protein, PRH, is a tissue‐specific inhibitor of eIF4E‐dependent cyclin D1 mRNA transport and growth , 2003, The EMBO journal.

[108]  M. King,et al.  Genomic structure and evolutionary context of the human feline leukemia virus subgroup C receptor (hFLVCR) gene: evidence for block duplications and de novo gene formation within duplicons of the hFLVCR locus. , 2002, Gene.

[109]  T. Cavalier-smith The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. , 2002, International journal of systematic and evolutionary microbiology.

[110]  Urs Schmidt-Ott,et al.  A single Hox3 gene with composite bicoid and zerknüllt expression characteristics in non-Cyclorrhaphan flies , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[111]  S K Burley,et al.  Hierarchical phosphorylation of the translation inhibitor 4E-BP1. , 2001, Genes & development.

[112]  A. Kentsis,et al.  The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E. , 2001, Journal of molecular biology.

[113]  A. Kentsis,et al.  PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA , 2001, The EMBO journal.

[114]  N. Sonenberg,et al.  The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila , 2001, Nature Cell Biology.

[115]  A. Gingras,et al.  Regulation of translation initiation by FRAP/mTOR. , 2001, Genes & development.

[116]  M. Winey,et al.  Yeast Eap1p, an eIF4E-associated protein, has a separate function involving genetic stability , 2000, Current Biology.

[117]  E. Koonin,et al.  Eukaryote-specific domains in translation initiation factors: implications for translation regulation and evolution of the translation system. , 2000, Genome research.

[118]  P. Lasko The Drosophila melanogaster Genome: Translation Factors and RNA Binding Proteins , 2000 .

[119]  N. Sonenberg,et al.  Eap1p, a Novel Eukaryotic Translation Initiation Factor 4E-Associated Protein in Saccharomyces cerevisiae , 2000, Molecular and Cellular Biology.

[120]  N. Sonenberg,et al.  A novel shuttling protein, 4E‐T, mediates the nuclear import of the mRNA 5′ cap‐binding protein, eIF4E , 2000, The EMBO journal.

[121]  A. Bernal,et al.  Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[122]  R. Rhoads,et al.  Functional Characterization of Five eIF4E Isoforms inCaenorhabditis elegans * , 2000, The Journal of Biological Chemistry.

[123]  R. Méndez,et al.  Maskin is a CPEB-associated factor that transiently interacts with elF-4E. , 1999, Molecular cell.

[124]  A. Gingras,et al.  Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. , 1999, Molecular cell.

[125]  H. Jäckle,et al.  The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[126]  G. Wagner,et al.  The interaction of eIF4E with 4E‐BP1 is an induced fit to a completely disordered protein , 1998, Protein science : a publication of the Protein Society.

[127]  A. Gingras,et al.  4E-BP3, a New Member of the Eukaryotic Initiation Factor 4E-binding Protein Family* , 1998, The Journal of Biological Chemistry.

[128]  A. Gingras,et al.  Cloning and Characterization of 4EHP, a Novel Mammalian eIF4E-related Cap-binding Protein* , 1998, The Journal of Biological Chemistry.

[129]  K. Browning,et al.  Identification and Characterization of a Novel Cap-binding Protein from Arabidopsis thaliana * , 1998, The Journal of Biological Chemistry.

[130]  R. Rhoads,et al.  Multiple Isoforms of Eukaryotic Protein Synthesis Initiation Factor 4E in Caenorhabditis elegans Can Distinguish between Mono- and Trimethylated mRNA Cap Structures* , 1998, The Journal of Biological Chemistry.

[131]  A. Gingras,et al.  4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. , 1998, Genes & development.

[132]  N. Kyrpides,et al.  Universally conserved translation initiation factors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[133]  A. Gingras,et al.  4E binding proteins inhibit the translation factor eIF4E without folded structure. , 1998, Biochemistry.

[134]  A. Gingras,et al.  Structure of translation factor elF4E bound to m7GDP and interaction with 4E-binding protein , 1997, Nature Structural Biology.

[135]  A. Gingras,et al.  Cocrystal Structure of the Messenger RNA 5′ Cap-Binding Protein (eIF4E) Bound to 7-methyl-GDP , 1997, Cell.

[136]  J. de la Cruz,et al.  The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[137]  A. Spradling,et al.  The Drosophila gene fs(2)cup interacts with otu to define a cytoplasmic pathway required for the structure and function of germ-line chromosomes. , 1997, Development.

[138]  C. Berset,et al.  A novel inhibitor of cap‐dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E , 1997, The EMBO journal.

[139]  N. Sonenberg,et al.  Repression of cap‐dependent translation by 4E‐binding protein 1: competition with p220 for binding to eukaryotic initiation factor‐4E. , 1995, The EMBO journal.

[140]  N. Sonenberg,et al.  The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins , 1995, Molecular and cellular biology.

[141]  N. Sonenberg,et al.  PHAS-I as a link between mitogen-activated protein kinase and translation initiation. , 1994, Science.

[142]  A. Gingras,et al.  Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5'-cap function , 1994, Nature.

[143]  H. Ryoo,et al.  Regulation of Cell Death by IAPs and Their Antagonists. , 2015, Current topics in developmental biology.

[144]  J. Pelletier,et al.  Eukaryotic initiation factor 4F: a vulnerability of tumor cells. , 2012, Future medicinal chemistry.

[145]  K. Tomoo,et al.  A conserved motif within the flexible C-terminus of the translational regulator 4E-BP is required for tight binding to the mRNA cap-binding protein eIF4E. , 2012, The Biochemical journal.

[146]  Y. Kohara,et al.  An isoform of eIF4E is a component of germ granules and is required for spermatogenesis in C. elegans , 2001 .

[147]  A. Gingras,et al.  eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. , 1999, Annual review of biochemistry.