Improved methods for simulating nearly extremal binary black holes

Astrophysical black holes could be nearly extremal (that is, rotating nearly as fast as possible); therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen–York limit of S/m^2 = 0.93. We present improved methods that enable us to simulate merging, nearly extremal black holes (i.e., black holes with S/m^2 > 0.93) more robustly and more efficiently. We use these methods to simulate an unequal-mass, precessing binary black hole (BBH) coalescence, where the larger black hole has S/m^2 = 0.99. We also use these methods to simulate a non-precessing BBH coalescence, where both black holes have S/m^2 = 0.994, nearly reaching the Novikov–Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; we compare the evolution of the black hole masses and spins with analytic predictions; and we explore the effect of increasing spin magnitude on the orbital dynamics (the so-called ‘orbital hangup’ effect).

[1]  Thibault Damour,et al.  Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[2]  High accuracy simulations of black hole binaries: Spins anti-aligned with the orbital angular momentum , 2009, 0909.1313.

[3]  T. Damour,et al.  Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation , 2013, 1305.4884.

[4]  S. Husa,et al.  Bowen-York trumpet data and black-hole simulations , 2009, 0908.1063.

[5]  A. Buonanno,et al.  Spin effects on gravitational waves from inspiraling compact binaries at second post-Newtonian order , 2012, 1209.6349.

[6]  F. Ohme,et al.  Simulations of black-hole binaries with unequal masses or nonprecessing spins: Accuracy, physical pr , 2010 .

[7]  M. Scheel,et al.  Testing outer boundary treatments for the Einstein equations , 2007, 0704.0782.

[8]  A. Fabian,et al.  On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra , 2012, 1204.5854.

[9]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[10]  Michael Boyle,et al.  The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries , 2012, 1201.5319.

[11]  Nonexistence of conformally flat slices in Kerr and other stationary spacetimes. , 2003, Physical review letters.

[12]  S. Marsat,et al.  Gravitational waves from spinning compact object binaries: New post-Newtonian results , 2013, 1312.5375.

[13]  C D Collinson,et al.  Essays in General Relativity , 1981 .

[14]  J. York Energy and Momentum of the Gravitational Field , 1980 .

[15]  O. Rinne Stable radiation-controlling boundary conditions for the generalized harmonic Einstein equations , 2006, gr-qc/0606053.

[16]  Frans Pretorius,et al.  Ultrarelativistic particle collisions. , 2009, Physical review letters.

[17]  B. Szilágyi,et al.  Improved gauge driver for the generalized harmonic Einstein system , 2009, 0904.4873.

[18]  Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms , 2009 .

[19]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[20]  B. Iyer,et al.  Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order , 2014, 1409.3546.

[21]  N. Demos,et al.  Nearly extremal apparent horizons in simulations of merging black holes , 2014, 1411.7297.

[22]  Frans Pretorius,et al.  Numerical relativity using a generalized harmonic decomposition , 2005 .

[23]  Cosmology,et al.  Comparing gravitational waves from nonprecessing and precessing black hole binaries in the corotating frame , 2013, 1304.3176.

[24]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[25]  A. L. Tiec The Overlap of Numerical Relativity, Perturbation Theory and Post-Newtonian Theory in the Binary Black Hole Problem , 2012, 1408.5505.

[26]  Laeff,et al.  STELLAR-MASS BLACK HOLE SPIN CONSTRAINTS FROM DISK REFLECTION AND CONTINUUM MODELING , 2009, 0902.2840.

[27]  N. W. Taylor,et al.  Dynamical excision boundaries in spectral evolutions of binary black hole spacetimes , 2012, 1211.6079.

[28]  Simulating merging binary black holes with nearly extremal spins , 2010, 1010.2777.

[29]  Michael Boyle,et al.  High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions , 2007, 0710.0158.

[30]  Y. Zlochower,et al.  Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries , 2008, 0803.0351.

[31]  C. Lousto,et al.  New conformally flat initial data for spinning black holes , 2002 .

[32]  Black hole binary remnant mass and spin: A new phenomenological formula , 2013, 1312.5775.

[33]  Wiseman,et al.  Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order. , 1996, Physical review. D, Particles and fields.

[34]  S. Marsat,et al.  Next-to-next-to-leading order spin–orbit effects in the near-zone metric and precession equations of compact binaries , 2012, 1212.5520.

[35]  Circular orbits and spin in black-hole initial data , 2006, gr-qc/0605053.

[36]  Jeffrey M. Bowen,et al.  General form for the longitudinal momentum of a spherically symmetric source , 1979 .

[37]  P. Ajith,et al.  Template bank for gravitational waveforms from coalescing binary black holes: Nonspinning binaries , 2008 .

[38]  Spinning-black-hole binaries: The orbital hang-up , 2006, gr-qc/0604012.

[39]  M. Reid,et al.  THE EXTREME SPIN OF THE BLACK HOLE IN CYGNUS X-1 , 2011, 1106.3690.

[40]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[41]  Bela Szilagyi,et al.  Key elements of robustness in binary black hole evolutions using spectral methods , 2014, 1405.3693.

[42]  Helmut Friedrich,et al.  On the hyperbolicity of Einstein's and other gauge field equations , 1985 .

[43]  Saul A. Teukolsky,et al.  Black Holes , 1998 .

[44]  The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105 , 2006, astro-ph/0606076.

[45]  W. Marsden I and J , 2012 .

[46]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[47]  Ernst Nils Dorband,et al.  Spin Diagrams for Equal-Mass Black Hole Binaries with Aligned Spins , 2007, 0708.3999.

[48]  R. Narayan,et al.  Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets , 2013, Space Science Reviews.

[49]  C. Gundlach,et al.  Pseudospectral apparent horizon finders: An efficient new algorithm , 1997, gr-qc/9707050.

[50]  G. Lovelace,et al.  High-accuracy gravitational waveforms for binary black hole mergers with nearly extremal spins , 2011, 1110.2229.

[51]  Joan M. Centrella,et al.  Black-hole binaries, gravitational waves, and numerical relativity , 2010, 1010.5260.

[52]  P. Marronetti,et al.  High-spin binary black hole mergers , 2007, 0709.2160.

[53]  M. Reid,et al.  CONFIRMATION VIA THE CONTINUUM-FITTING METHOD THAT THE SPIN OF THE BLACK HOLE IN CYGNUS X-1 IS EXTREME , 2013, 1308.4760.

[54]  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[55]  Bernd Bruegmann,et al.  A Simple Construction of Initial Data for Multiple Black Holes , 1997 .

[56]  Harald P. Pfeiffer,et al.  Numerical simulations of compact object binaries , 2012, 1203.5166.

[57]  Conformal ``thin sandwich'' data for the initial-value problem of general relativity , 1998, gr-qc/9810051.

[58]  Manuel Tiglio,et al.  Gauge invariant perturbations of Schwarzschild black holes in horizon penetrating coordinates , 2001 .

[59]  S. Ossokine,et al.  Precession-tracking coordinates for simulations of compact-object-binaries , 2013, 1304.3067.

[60]  J. York,et al.  Time-asymmetric initial data for black holes and black-hole collisions , 1980 .

[61]  E. Poisson,et al.  Multiscale analysis of the electromagnetic self-force in a weak gravitational field , 2007, 0708.3037.

[62]  Harald P. Pfeiffer,et al.  A Multidomain spectral method for solving elliptic equations , 2002, gr-qc/0202096.

[63]  Lawrence E. Kidder,et al.  A new generalized harmonic evolution system , 2005, gr-qc/0512093.

[64]  Ching-Hsing Yu,et al.  SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre , 2010 .

[65]  B. Iyer,et al.  The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits , 2008, 0802.1249.

[66]  Michael Boyle,et al.  Effective-one-body model for black-hole binaries with generic mass ratios and spins , 2013, Physical Review D.

[67]  Andrea Taracchini,et al.  Reducing orbital eccentricity of precessing black-hole binaries , 2010, 1012.1549.

[68]  B. Iyer,et al.  The third and a half-post-Newtonian gravitational wave quadrupole mode for quasi-circular inspiralling compact binaries , 2012, 1204.1043.

[69]  Approximate Killing Vectors on S**2 , 2007, 0706.0199.

[70]  K. Chatziioannou,et al.  Tidal heating and torquing of a Kerr black hole to next-to-leading order in the tidal coupling , 2012, 1211.1686.

[71]  D. J. Walton,et al.  Suzaku observations of 'bare' active galactic nuclei , 2012, 1210.4593.

[72]  Michael Boyle,et al.  Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration , 2013, 1307.5307.

[73]  Cook,et al.  Apparent horizons for boosted or spinning black holes. , 1990, Physical review. D, Particles and fields.

[74]  G. Lovelace,et al.  Binary-black-hole initial data with nearly extremal spins , 2008, 0805.4192.

[75]  Harald P. Pfeiffer,et al.  Reducing orbital eccentricity in binary black hole simulations , 2007 .

[76]  Michael Boyle,et al.  Angular velocity of gravitational radiation from precessing binaries and the corotating frame , 2013, 1302.2919.

[77]  Harald P. Pfeiffer,et al.  Solving Einstein's equations with dual coordinate frames , 2006, gr-qc/0607056.

[78]  A. Buonanno,et al.  Next-to-leading tail-induced spin–orbit effects in the gravitational radiation flux of compact binaries , 2013, 1307.6793.

[79]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[80]  M. Hannam Modelling gravitational waves from precessing black-hole binaries: progress, challenges and prospects , 2013, General Relativity and Gravitation.

[81]  N. W. Taylor,et al.  Final spin and radiated energy in numerical simulations of binary black holes with equal masses and equal, aligned or antialigned spins , 2013, 1305.5991.

[82]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[83]  S. Nissanke,et al.  Suitability of post-Newtonian/numerical-relativity hybrid waveforms for gravitational wave detectors , 2011, 1102.5128.

[84]  C. Reynolds,et al.  Measuring Black Hole Spin Using X-Ray Reflection Spectroscopy , 2013, 1302.3260.

[85]  H. Pfeiffer,et al.  Implementation of higher-order absorbing boundary conditions for the Einstein equations , 2008, 0811.3593.

[86]  Harald P. Pfeiffer,et al.  Simulations of unequal-mass black hole binaries with spectral methods , 2012, 1206.3015.

[87]  Michael Boyle,et al.  Catalog of 174 binary black hole simulations for gravitational wave astronomy. , 2013, Physical review letters.

[88]  Lawrence E. Kidder,et al.  High-accuracy waveforms for binary black hole inspiral, merger, and ringdown , 2008, 0810.1767.

[89]  Lawrence E. Kidder,et al.  Massive disc formation in the tidal disruption of a neutron star by a nearly extremal black hole , 2013, 1302.6297.

[90]  Frame-dragging vortexes and tidal tendexes attached to colliding black holes: visualizing the curvature of spacetime. , 2010, Physical review letters.

[91]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[92]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[93]  Lawrence E. Kidder,et al.  High-accuracy numerical simulation of black-hole binaries: Computation of the gravitational-wave energy flux and comparisons with post-Newtonian approximants , 2008, 0804.4184.

[94]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[95]  R. Fujita Gravitational Radiation for Extreme Mass Ratio Inspirals to the 14th Post-Newtonian Order , 2011, 1104.5615.

[96]  Robert Owen Topics in Numerical Relativity: The periodic standing-wave approximation, the stability of constraints in free evolution, and the spin of dynamical black holes , 2007 .

[97]  Mark A. Scheel,et al.  Simulations of Binary Black Hole Mergers Using Spectral Methods , 2009, 0909.3557.

[98]  Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.