The Golden Section Search Algorithm for Finding a Good Shape Parameter for Meshless Collocation Methods

[1]  Leevan Ling,et al.  Adaptive Method of Particular Solution for Solving 3D Inhomogeneous Elliptic Equations , 2010 .

[2]  Robert Schaback,et al.  An improved subspace selection algorithm for meshless collocation methods , 2009 .

[3]  Ching-Shyang Chen,et al.  A Revisit on the Derivation of the Particular Solution for the Differential Operator ∆ 2 ± λ 2 , 2009 .

[4]  A. Karageorghis A Practical Algorithm for Determining the Optimal Pseudo-Boundary in the Method of Fundamental Solutions , 2009 .

[5]  Leevan Ling,et al.  Applicability of the method of fundamental solutions , 2009 .

[6]  Robert Schaback,et al.  On convergent numerical algorithms for unsymmetric collocation , 2009, Adv. Comput. Math..

[7]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[8]  C. Fan,et al.  The Method of Fundamental Solutions for Solving Convection-Diffusion Equations with Variable Coefficients , 2009 .

[9]  Robert Schaback,et al.  Stable and Convergent Unsymmetric Meshless Collocation Methods , 2008, SIAM J. Numer. Anal..

[10]  Y. C. Hon,et al.  A computational method for inverse free boundary determination problem , 2008 .

[11]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[12]  A. Cheng,et al.  Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method , 2007 .

[13]  J. Wertz,et al.  The role of the multiquadric shape parameters in solving elliptic partial differential equations , 2006, Comput. Math. Appl..

[14]  R. Schaback,et al.  Results on meshless collocation techniques , 2006 .

[15]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[16]  M. Golberg Boundary integral methods : numerical and mathematical aspects , 1999 .

[17]  Graeme Fairweather,et al.  The method of fundamental solutions for elliptic boundary value problems , 1998, Adv. Comput. Math..

[18]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[19]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[20]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[21]  J. Kiefer,et al.  Sequential minimax search for a maximum , 1953 .