A fully robust framework for MAP image super-resolution

In this work, we propose an adaptive M-estimation scheme for robust image super-resolution. The proposed algorithm relies on a maximum a posteriori (MAP) framework and addresses the presence of outliers in the low resolution images. Moreover, apart from the robust estimation of the high resolution image, the contribution of the method is twofold: (i) the robust computation of the regularization parameters controlling the relative strength of the prior with respect to the data fidelity term and (ii) the robust estimation of the optimal step size in the update of the high resolution image. Experimental results demonstrate that integrating these estimations into a robust framework leads to significant improvement in the accuracy of the high resolution image.

[1]  Lisimachos P. Kondi,et al.  An image super-resolution algorithm for different error levels per frame , 2006, IEEE Transactions on Image Processing.

[2]  Somchai Jitapunkul,et al.  A Robust Iterative Super-Resolution Reconstruction of Image Sequences using a Lorentzian Bayesian Approach with Fast Affine Block-Based Registration , 2007, 2007 IEEE International Conference on Image Processing.

[3]  Russell C. Hardie,et al.  Joint MAP registration and high-resolution image estimation using a sequence of undersampled images , 1997, IEEE Trans. Image Process..

[4]  Shmuel Peleg,et al.  Robust super-resolution , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.

[6]  Somchai Jitapunkul,et al.  A Lorentzian Stochastic Estimation for a Robust Iterative Multiframe Super-Resolution Reconstruction with Lorentzian-Tikhonov Regularization , 2007, EURASIP J. Adv. Signal Process..

[7]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[8]  Lisimachos P. Kondi,et al.  On the improvement of image registration for high accuracy super-resolution , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[9]  Panos Papamichalis,et al.  Using bounded-influence M-estimators in multi-frame super-resolution reconstruction: A comparative study , 2008, 2008 15th IEEE International Conference on Image Processing.

[10]  Panos Papamichalis,et al.  Robust Color Image Superresolution: An Adaptive M-Estimation Framework , 2008, EURASIP J. Image Video Process..

[11]  Lisimachos P. Kondi,et al.  Resolution enhancement of video sequences with simultaneous estimation of the regularization parameters , 2003, IS&T/SPIE Electronic Imaging.

[12]  Panos E. Papamichalis,et al.  An adaptive M-estimation framework for robust image super resolution without regularization , 2008, Electronic Imaging.

[13]  Lisimachos P. Kondi,et al.  Resolution enhancement of video sequences with simultaneous estimation of the regularization parameter , 2004, J. Electronic Imaging.

[14]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.