Forming stable helical peptides using natural and artificial amino acids

[1]  D. Kemp,et al.  Efficient helix nucleation by a macrocyclic triproline-derived template , 1995 .

[2]  D. Brutlag,et al.  Discovering structural correlations in α‐helices , 1994 .

[3]  L Serrano,et al.  Development of the multiple sequence approximation within the AGADIR model of alpha-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms. , 1997, Biopolymers.

[4]  C. Toniolo,et al.  The polypeptide 310-helix. , 1991, Trends in biochemical sciences.

[5]  M. Ghadiri,et al.  Secondary structure nucleation in peptides. Transition metal ion stabilized .alpha.-helices , 1990 .

[6]  S. Schreiber,et al.  Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. , 1995, Science.

[7]  Robert S. McDowell,et al.  A General Method for Constraining Short Peptides to an α-Helical Conformation , 1997 .

[8]  A. Lupas Coiled coils: new structures and new functions. , 1996, Trends in biochemical sciences.

[9]  A Fournier,et al.  Synthesis, biological activity and conformational analysis of cyclic GRF analogs. , 2009 .

[10]  E. Giralt,et al.  Recognition and Stabilization of an α-Helical Peptide by a Synthetic Receptor , 1997 .

[11]  Thomas J. Allen,et al.  The Structure and Energetics of Helix Formation by Short Templated Peptides in Aqueous Solution. 2. Characterization of the Helical Structure of Ac-Hel1-Ala6-OH , 1996 .

[12]  R. L. Baldwin,et al.  Helix-forming tendencies of amino acids in short (hydroxybutyl)-L-glutamine peptides: an evaluation of the contradictory results from host-guest studies and short alanine-based peptides. , 1994, Biochemistry.

[13]  T. Singh,et al.  Conformation and design of peptides with α,β-dehydro-amino acid residues , 1996 .

[14]  R. L. Baldwin,et al.  Helical peptides with three pairs of Asp‐Arg and Glu‐Arg residues in different orientations and spacings , 1993, Protein science : a publication of the Protein Society.

[15]  R. L. Baldwin,et al.  Straight-chain non-polar amino acids are good helix-formers in water. , 1991, Journal of molecular biology.

[16]  H. Scheraga,et al.  Helix‐coil stability constants for the naturally occurring amino acids in water. XXIV. Half‐cystine parameters from random poly(hydroxybutylglutamine‐CO‐S‐methylthio‐L‐cysteine) , 1990 .

[17]  James G. Boyd,et al.  Studies of N-terminal templates for .alpha.-helix formation. Synthesis and conformational analysis of (2S,5S,8S,11S)-1-acetyl-1,4-diaza-3-keto-5-carboxy-10-thiatricyclo[2.8.1.04,8]tridecane (Ac-Hel1-OH) , 1991 .

[18]  B. Zimm,et al.  Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains , 1959 .

[19]  W A Shirley,et al.  Curious structure in “canonical” alanine‐based peptides , 1997, Proteins.

[20]  L. Gierasch,et al.  Side chain–backbone hydrogen bonding contributes to helix stability in peptides derived from an α‐helical region of carboxypeptidase A , 1991, Proteins.

[21]  Douglas R. Powell,et al.  Residue-based control of helix shape in β-peptide oligomers , 1997, Nature.

[22]  P. Lyu,et al.  The Role of Ion Pairs in α-Helix Stability: Two New Designed Helical Peptides , 1989 .

[23]  M. Prévost Concurrent interactions contribute to the raised pKa of His18 in Barnase. , 1996, Journal of molecular biology.

[24]  P. Hopkins,et al.  Metal ion enhanced helicity in synthetic peptides containing unnatural, metal-ligating residues , 1990 .

[25]  A. Motta,et al.  Sequential 1H NMR assignment and secondary structure determination of salmon calcitonin in solution. , 1989, Biochemistry.

[26]  B. Wallace Crystallographic studies of a transmembrane ion channel, gramicidin A. , 1992, Progress in biophysics and molecular biology.

[27]  R. L. Baldwin,et al.  4 – α-Helix Formation by Peptides in Water , 1995 .

[28]  A. Hamilton,et al.  Stabilization of helical domains in short peptides using hydrophobic interactions. , 1995, Biochemistry.

[29]  D E Wemmer,et al.  Alpha helix capping in synthetic model peptides by reciprocal side chain–main chain interactions: Evidence for an N terminal “capping box” , 1994, Proteins.

[30]  R. Parthasarathy,et al.  Design of α-helical peptides: Their role in protein folding and molecular biology , 1995 .

[31]  E. Stellwagen,et al.  Effect of amino acid ion pairs on peptide helicity. , 1991, Biochemistry.

[32]  O. Ptitsyn Kinetic and equilibrium intermediates in protein folding. , 1994, Protein engineering.

[33]  T. Sosnick,et al.  Molecular collapse: The rate‐limiting step in two‐state cytochrome c folding , 1996, Proteins.

[34]  I. Karle,et al.  Structural characteristics of alpha-helical peptide molecules containing Aib residues. , 1990, Biochemistry.

[35]  E. Stellwagen,et al.  Residue helix parameters obtained from dichroic analysis of peptides of defined sequence. , 1993, Biochemistry.

[36]  D. Obrecht,et al.  Design and synthesis of novel nonpolar host peptides for the determination of the 310‐ and α‐helix compatibilities of α‐amino acid buildig blocks: An assessment of α,α‐disubstituted glycines , 1997 .

[37]  H. Scheraga,et al.  Conformational constraints of amino acid side chains in α‐helices , 1987 .

[38]  Zhengshuang Shi,et al.  Alanine is an intrinsic α-helix stabilizing amino acid , 1999 .

[39]  J. Richardson,et al.  Principles and Patterns of Protein Conformation , 1989 .

[40]  W. DeGrado,et al.  A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. , 1990, Science.

[41]  Peter G. Schultz,et al.  General approach to the synthesis of short .alpha.-helical peptides , 1991 .

[42]  J. Hermans,et al.  310 HELIX VERSUS ALPHA -HELIX : A MOLECULAR DYNAMICS STUDY OF CONFORMATIONAL PREFERENCES OF AIB AND ALANINE , 1994 .

[43]  C. Pace,et al.  Helix propensities are identical in proteins and peptides. , 1997, Biochemistry.

[44]  G. Fasman Prediction of Protein Structure and the Principles of Protein Conformation , 2012, Springer US.

[45]  A. Beck‐Sickinger,et al.  Structure–activity relationships of neuropeptide Y analogues with respect to Y1 and Y2 receptors , 1995, Biopolymers.

[46]  Luis Serrano,et al.  The hydrophobic-staple motif and a role for loop-residues in α-helix stability and protein folding , 1995, Nature Structural Biology.

[47]  H. Willems,et al.  The design of dipeptide helical mimetics: the synthesis, tachykinin receptor affinity and conformational analysis of 1,1,6-trisubstituted indanes. , 1996, Bioorganic & medicinal chemistry.

[48]  R. L. Baldwin,et al.  Determination of free energies of N-capping in alpha-helices by modification of the Lifson-Roig helix-coil therapy to include N- and C-capping. , 1994, Biochemistry.

[49]  I. Luque,et al.  Structure-based thermodynamic scale of alpha-helix propensities in amino acids. , 1996, Biochemistry.

[50]  H. Qian,et al.  Interactions between a helical residue and tertiary structures: helix propensities in small peptides and in native proteins. , 1996, Journal of molecular biology.

[51]  D. Kemp,et al.  Synthesis and analysis of a macrocyclic triproline-derived template containing a local conformational constraint , 1995 .

[52]  R. L. Baldwin,et al.  N‐ and C‐capping preferences for all 20 amino acids in α‐helical peptides , 1995, Protein science : a publication of the Protein Society.

[53]  R. L. Baldwin,et al.  Parameters of helix–coil transition theory for alanine‐based peptides of varying chain lengths in water , 1991, Biopolymers.

[54]  T. Ooi,et al.  Comparison of α‐helix stability in peptides having a negatively or positively charged residue block attached either to the N‐ or C‐terminus of an α‐helix: The electrostatic contribution and anisotropic stability of the α‐helix , 1989 .

[55]  G. Millhauser,et al.  Estimating the relative populations of 3(10)-helix and alpha-helix in Ala-rich peptides: a hydrogen exchange and high field NMR study. , 1997, Journal of molecular biology.

[56]  W. Kazmierski,et al.  Inhibitors of human immunodeficiency virus type 1 derived from gp41 transmembrane protein: structure--activity studies. , 1996, Journal of medicinal chemistry.

[57]  M. Mutter,et al.  Synthetic peptide and template‐assembled synthetic protein models of the hen egg white lysozyme 87–97 helix: Importance of a protein‐like framework for conformational stability in a short peptide sequence , 1993, Biopolymers.

[58]  G. Marshall,et al.  .alpha.-Helical versus 310-Helical Conformation of Alanine-Based Peptides in Aqueous Solution: An Electron Spin Resonance Investigation , 1995 .

[59]  Clay Bracken,et al.  SYNTHESIS AND NUCLEAR MAGNETIC RESONANCE STRUCTURE DETERMINATION OF AN ALPHA -HELICAL, BICYCLIC, LACTAM-BRIDGED HEXAPEPTIDE , 1994 .

[60]  G. Rose,et al.  Helix signals in proteins. , 1988, Science.

[61]  A. Pullman Contribution of theoretical chemistry to the study of ion transport through membranes , 1991 .

[62]  R. L. Baldwin,et al.  Helix propagation and N‐cap propensities of the amino acids measured in alanine‐based peptides in 40 volume percent trifluoroethanol , 1996, Protein science : a publication of the Protein Society.

[63]  N. Kallenbach,et al.  Stabilization of the ribonuclease S‐peptide α‐helix by trifluoroethanol , 1986 .

[64]  R. Fraser,et al.  Chain conformation in the collagen molecule. , 1979, Journal of molecular biology.

[65]  Juan Fernández-Recio,et al.  The Tryptophan/Histidine interaction in α-helices , 1997 .

[66]  N R Kallenbach,et al.  Side chain contributions to the stability of alpha-helical structure in peptides. , 1990, Science.

[67]  P. S. Kim,et al.  Intermediates in the folding reactions of small proteins. , 1990, Annual review of biochemistry.

[68]  H De Loof,et al.  Amphipathic helix motif: Classes and properties , 1990, Proteins.

[69]  P. Lyu,et al.  Capping interactions in isolated alpha helices: position-dependent substitution effects and structure of a serine-capped peptide helix. , 1993, Biochemistry.

[70]  Joel P. Schneider,et al.  Templates That Induce .alpha.-Helical, .beta.-Sheet, and Loop Conformations , 1995 .

[71]  B. Guérin,et al.  Design and synthesis of novel peptides bearing a host and a guest side chains , 1994 .

[72]  John W. Taylor,et al.  A new strategy applied to the synthesis of an α-helical bicyclic peptide constrained by two overlapping i, i+7 side-chain bridges of novel design , 1996 .

[73]  K. Struhl,et al.  The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α Helices: Crystal structure of the protein-DNA complex , 1992, Cell.

[74]  I. Karle,et al.  ω-Amino Acids in Peptide Design. Crystal Structures and Solution Conformations of Peptide Helices Containing a β-Alanyl-γ-Aminobutyryl Segment , 1997 .

[75]  N. Andersen,et al.  Empirical parameterization of a model for predicting peptide helix/coil equilibrium populations , 1997, Protein science : a publication of the Protein Society.

[76]  T. Keiderling,et al.  Characterization of alanine-rich peptides, Ac-(AAKAA)n-GY-NH2 (n = 1-4), using vibrational circular dichroism and Fourier transform infrared. Conformational determination and thermal unfolding. , 1997, Biochemistry.

[77]  A. Doig,et al.  Hydrogen bonding interactions between glutamine and asparagine in alpha-helical peptides. , 1997, Journal of molecular biology.

[78]  N. Kallenbach,et al.  The helix–coil transition in heterogeneous peptides with specific side‐chain interactions: Theory and comparison with CD spectral data , 1991, Biopolymers.

[79]  J Deisenhofer,et al.  Structure and function of cytochromes P450: a comparative analysis of three crystal structures. , 1995, Structure.

[80]  T. Ooi,et al.  Effects of salts on the nonequivalent stability of the α‐helices of isomeric block copolypeptides , 1982 .

[81]  S. Lifson,et al.  On the Theory of Helix—Coil Transition in Polypeptides , 1961 .

[82]  H. Willems,et al.  The design of dipeptide helical mimetics, Part I: the synthesis of 1,6-disubstituted indanes , 1995 .

[83]  R. L. Baldwin,et al.  Large differences in the helix propensities of alanine and glycine , 1991, Nature.

[84]  U. Sauer,et al.  Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis. , 1991, Biochemistry.

[85]  James G. Boyd,et al.  The helical s constant for alanine in water derived from template-nucleated helices , 1991, Nature.

[86]  Robert L. Baldwin,et al.  Relative helix-forming tendencies of nonpolar amino acids , 1990, Nature.

[87]  T. Creighton Proteins: Structures and Molecular Properties , 1986 .

[88]  Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. , 1993, Journal of molecular biology.

[89]  N. Kallenbach,et al.  Quantitative evaluation of stabilizing interactions in a prenucleated .alpha.-helix by hydrogen exchange , 1994 .

[90]  S. Schreiber,et al.  Vinylogous polypeptides: an alternative peptide backbone , 1992 .

[91]  K. Struhl Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins. , 1989, Trends in biochemical sciences.

[92]  P. Lyu,et al.  Position-dependent stabilizing effects in .alpha.-helices: N-terminal capping in synthetic model peptides , 1992 .

[93]  B. Matthews,et al.  Structural basis of DNA-protein recognition. , 1989, Trends in biochemical sciences.

[94]  G. Millhauser,et al.  Short alanine-based peptides may form 310-helices and not α-helices in aqueous solution , 1992, Nature.

[95]  G. Rose,et al.  α‐Helix‐forming propensities in peptides and proteins , 1994 .

[96]  E. Kaiser,et al.  Amphiphilic secondary structure: design of peptide hormones. , 1984, Science.

[97]  R. L. Baldwin,et al.  Helix propensities of basic amino acids increase with the length of the side-chain. , 1996, Journal of molecular biology.

[98]  R. L. Baldwin,et al.  Measuring the strength of side-chain hydrogen bonds in peptide helices: the Gln.Asp (i, i + 4) interaction. , 1995, Biochemistry.

[99]  W A Hendrickson,et al.  Refinement of a molecular model for lamprey hemoglobin from Petromyzon marinus. , 1985, Journal of molecular biology.

[100]  Gunnar von Heijne,et al.  Proline kinks in transmembrane α-helices☆ , 1991 .

[101]  Wentao Zhang,et al.  Efficient solid-phase synthesis of peptides with tripodal side-chain bridges and optimization of the solvent conditions for solid-phase cyclizations , 1996 .

[102]  B. Matthews,et al.  A mutant T4 lysozyme (Val 131 → Ala) designed to increase thermostability by the reduction of strain within an α‐helix , 1990, Proteins.

[103]  B. Finlay,et al.  The 'Asx-Pro turn' as a local structural motif stabilized by alternative patterns of hydrogen bonds and a consensus-derived model of the sequence Asn-Pro-Asn. , 1997, Protein engineering.

[104]  C. Toniolo,et al.  Long, chiral polypeptide 3(10)-helices at atomic resolution. , 1988, Journal of biomolecular structure & dynamics.

[105]  Roland L. Dunbrack,et al.  Chiral N-substituted glycines can form stable helical conformations. , 1997, Folding & design.

[106]  G. Marshall,et al.  THE MOLTEN HELIX : EFFECTS OF SOLVATION ON THE ALPHA - TO 310-HELICAL TRANSITION , 1995 .

[107]  R. Campbell,et al.  Solution structures of cyclic and dicyclic analogues of growth hormone releasing factor as determined by two‐dimensional NMR and CD spectroscopies and constrained molecular dynamics , 1992, Biopolymers.

[108]  P. Balaram,et al.  Non-standard amino acids in peptide design and protein engineering , 1992, Current Biology.

[109]  J. Thornton,et al.  Helix geometry in proteins. , 1988, Journal of molecular biology.

[110]  R. L. Baldwin,et al.  Effect of a single aspartate on helix stability at different positions in a neutral alanine‐based peptide , 1993, Protein science : a publication of the Protein Society.

[111]  B. Dunn,et al.  Peptide Synthesis Protocols , 1994 .

[112]  R. L. Baldwin,et al.  Ion-pair and charged hydrogen-bond interactions between histidine and aspartate in a peptide helix. , 1997, Biochemistry.

[113]  John W. Taylor,et al.  Multicyclic polypeptide model compounds. 2. Synthesis and conformational properties of a highly .alpha.-helical uncosapeptide constrained by three side-chain to side-chain lactam bridges , 1992 .

[114]  J. W. Taylor,et al.  Structural and conformational requirements for human calcitonin activity: design, synthesis, and study of lactam-bridged analogues. , 1995, Journal of medicinal chemistry.

[115]  Samuel H. Gellman,et al.  β-Peptide Foldamers: Robust Helix Formation in a New Family of β-Amino Acid Oligomers , 1996 .

[116]  A. Fersht,et al.  Effect of alanine versus glycine in α-helices on protein stability , 1992, Nature.

[117]  M. Mutter,et al.  Confromational Studies on Peptides Containing Enantiometric α-Methyl α-Amino Acids. Part I. Differential conformational properties of (R)- and (S)-2-methylaspartic acid , 1992 .

[118]  M. Chorev,et al.  Cyclic parathyroid hormone related protein antagonists: lysine 13 to aspartic acid 17 [i to (i + 4)] side chain to side chain lactamization. , 1991, Biochemistry.

[119]  Virander S. Chauhan,et al.  Conformational characteristics of peptides containing α,β-dehydroamino acid residues , 1996 .

[120]  R. L. Baldwin,et al.  A neutral, water-soluble, .alpha.-helical peptide: the effect of ionic strength on the helix-coil equilibrium , 1991 .

[121]  C. Toniolo,et al.  Distinguishing helix conformations in alanine-rich peptides using the unnatural amino acid TOAC and electron spin resonance , 1996 .

[122]  Tomikazu Sasaki,et al.  Synthesis of peptides containing unnatural, metal-ligating residues: aminodiacetic acid as a peptide side chain , 1991 .

[123]  D. Kemp,et al.  A macrocyclic triproline-derived template for helix nucleation , 1995 .

[124]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[125]  L Serrano,et al.  Side-chain interactions between sulfur-containing amino acids and phenylalanine in alpha-helices. , 1995, Biochemistry.

[126]  H. Qian,et al.  Helix-coil theories: a comparative study for finite length polypeptides , 1992 .

[127]  D. L. Veenstra,et al.  Stabilizing and destabilizing effects of placing beta-branched amino acids in protein alpha-helices. , 1994, Biochemistry.

[128]  D. Kemp,et al.  Conformational analysis of a triproline-derived helical template and its peptide conjugates , 1995 .

[129]  C L Brooks,et al.  A microscopic view of helix propagation: N and C-terminal helix growth in alanine helices. , 1996, Journal of molecular biology.

[130]  M. Ghadiri,et al.  Peptide architecture. Design of stable .alpha.-helical metallopeptides via a novel exchange-inert ruthenium(III) complex , 1990 .

[131]  R. Gundry,et al.  4-Aminopiperidine-4-carboxylic Acid: A Cyclic alpha,alpha-Disubstituted Amino Acid for Preparation of Water-Soluble Highly Helical Peptides. , 1996, The Journal of organic chemistry.

[132]  Chung F. Wong,et al.  Predicting helical segments in proteins by a helix‐coil transition theory with parameters derived from a structural database of proteins , 1997, Proteins.

[133]  John W. Taylor,et al.  Multicyclic polypeptide model compounds. 1. Synthesis of a tricyclic amphiphilic .alpha.-helical peptide using an oxime resin, segment-condensation approach , 1990 .

[134]  G. Milhaud,et al.  Predicted secondary structure of calcitonin in relation to the biological activity. , 1979, Biochemical and biophysical research communications.

[135]  P. Y. Chou,et al.  Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. , 1974, Biochemistry.

[136]  Thomas J. Allen,et al.  The Energetics of Helix Formation by Short Templated Peptides in Aqueous Solution. 1. Characterization of the Reporting Helical Template Ac-Hel1 , 1995 .

[137]  Thomas J. Allen,et al.  Studies of N-terminal templates for .alpha.-helix formation. Synthesis and conformational analysis of peptide conjugates of (2S,5S,8S,11S)-1-acetyl-1,4-diaza-3-keto-5-carboxy-10-thiatricyclo[2.8.1.04,8]tridecane (Ac-Hel1-OH) , 1991 .

[138]  Tomikazu Sasaki,et al.  Spermine-Induced Conformational Changes of a Synthetic Peptide , 1993 .

[139]  R. L. Baldwin,et al.  Kinetics of amide proton exchange in helical peptides of varying chain lengths. Interpretation by the Lifson-Roig equation. , 1992, Biochemistry.

[140]  B. Matthews,et al.  Structural basis of amino acid alpha helix propensity. , 1993, Science.

[141]  R. L. Baldwin,et al.  Helix propensities of the amino acids measured in alanine‐based peptides without helix‐stabilizing side‐chain interactions , 1994, Protein science : a publication of the Protein Society.

[142]  R. Srinivasan,et al.  Local Interactions in Protein Folding: Lessons from the α-Helix* , 1997, The Journal of Biological Chemistry.

[143]  J. Thornton,et al.  Structures of N‐termini of helices in proteins , 1997, Protein science : a publication of the Protein Society.

[144]  D. Kemp,et al.  High Helicities of Lys-Containing, Ala-Rich Peptides Are Primarily Attributable to a Large, Context-Dependent Lys Stabilization , 1998 .

[145]  C. Toniolo Structure of conformationally constrained peptides: From model compounds to bioactive peptides , 1989, Biopolymers.

[146]  Ulrich Hommel,et al.  β‐Peptides: Synthesis by Arndt‐Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X‐ray crystallography. Helical secondary structure of a β‐hexapeptide in solution and its stability towards pepsin , 1996 .

[147]  B. Gutte Peptides : synthesis, structures, and applications , 1995 .

[148]  C. Cantor,et al.  Biophysical Chemistry: Part II: Techniques for the Study of Biological Structure and Function , 1980 .

[149]  S. Gellman,et al.  Redox control of secondary structure in a designed peptide , 1993 .

[150]  L. Serrano,et al.  C-capping and helix stability: the Pro C-capping motif. , 1997, Journal of molecular biology.

[151]  M Karplus,et al.  Protein folding dynamics: The diffusion‐collision model and experimental data , 1994, Protein science : a publication of the Protein Society.

[152]  B C Finzel,et al.  Crystal structure of yeast cytochrome c peroxidase refined at 1.7-A resolution. , 1984, The Journal of biological chemistry.

[153]  T. Creighton,et al.  Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pKa values in proteins of the thioredoxin family. , 1995, Journal of molecular biology.

[154]  N. Voyer The development of peptide nanostructures , 1997 .

[155]  J. Richardson,et al.  Amino acid preferences for specific locations at the ends of alpha helices. , 1988, Science.

[156]  Thomas J. Allen,et al.  THE STRUCTURE AND ENERGETICS OF HELIX FORMATION BY SHORT TEMPLATED PEPTIDES IN AQUEOUS SOLUTION. 3. CALCULATION OF THE HELICAL PROPAGATION CONSTANT S FROM THE TEMPLATE STABILITY CONSTANTS T/C FOR AC-HEL1-ALAN-OH, N = 1-6 , 1996 .

[157]  E. Stellwagen,et al.  Modulation of the helical stability of a model peptide by ionic residues. , 1993, Biochemistry.

[158]  D. Kemp,et al.  Progress toward a novel C-terminal helix capping principle: Synthesis and properties of (S)-α-(2-aminoethyl)-methionine , 1994 .

[159]  G. Rose,et al.  Helix stop signals in proteins and peptides: the capping box. , 1993, Biochemistry.

[160]  R. Woody Chapter 2 – Circular Dichroism of Peptides , 1985 .

[161]  G. Millhauser Views of helical peptides: a proposal for the position of 3(10)-helix along the thermodynamic folding pathway. , 1995, Biochemistry.

[162]  V. Hruby,et al.  Design of novel synthetic peptides including cyclic conformationally and topographically constrained analogs. , 1994, Methods in molecular biology.

[163]  Paul A. Bartlett,et al.  A Template for Stabilization of a Peptide α-Helix: Synthesis and Evaluation of Conformational Effects by Circular Dichroism and NMR , 1997 .

[164]  N. Kallenbach,et al.  α-Helix Nucleation Constant in Copolypeptides of Alanine and Ornithine or Lysine , 1998 .

[165]  R. L. Baldwin,et al.  Helix-stabilizing interaction between tyrosine and leucine or valine when the spacing is i, i + 4. , 1994, Journal of molecular biology.

[166]  Claudio Toniolo,et al.  Structures of peptides from α‐amino acids methylated at the α‐carbon , , 1993 .

[167]  I D Campbell,et al.  Four-helix bundle growth factors and their receptors: protein-protein interactions. , 1995, Current opinion in structural biology.

[168]  Arnold C. Satterthwait,et al.  The Hydrogen Bond Mimic Approach: Solid-Phase Synthesis of a Peptide Stabilized as an α-Helix with a Hydrazone Link , 1999 .

[169]  A. Fersht,et al.  Alpha-helix stability in proteins. II. Factors that influence stability at an internal position. , 1992, Journal of molecular biology.

[170]  T. Rutherford,et al.  Design, synthesis, structure and properties of an α-helix cap template derived from N-[(2S)-2-chloropropionyl]-(2S)-Pro-(2R)-Ala-(2S,4S)-4-thioPro-OMe which initiates α-helical structures , 1998 .

[171]  B. Forood,et al.  Extraordinary Helicity in Short Peptides via End Capping Design , 1994 .

[172]  E. Stellwagen,et al.  Incorporation of pairwise interactions into the Lifson‐Roig model for helix prediction , 1995, Protein science : a publication of the Protein Society.

[173]  P. Y. Chou,et al.  Prediction of protein conformation. , 1974, Biochemistry.

[174]  R. L. Baldwin,et al.  Stability of alpha-helices. , 1995, Advances in protein chemistry.

[175]  Randal R Ketchem,et al.  High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. , 1993, Science.

[176]  Timothy B. Karpishin,et al.  Copper-driven assembly of a helical-peptide-strapped zinc porphyrin , 1997 .

[177]  A. Hamilton,et al.  Molecular Recognition of Proteins: Sequence-Selective Binding of Aspartate Pairs in Helical Peptides , 1995 .

[178]  R. L. Baldwin,et al.  Comparison of NH exchange and circular dichroism as techniques for measuring the parameters of the helix-coil transition in peptides. , 1997, Biochemistry.

[179]  N. Kallenbach,et al.  The role of context on α‐helix stabilization: Host‐guest analysis in a mixed background peptide model , 1997, Protein science : a publication of the Protein Society.

[180]  R. Epand,et al.  Circular dichroism (CD) studies of antagonists derived from parathyroid hormone-related protein. , 2009, International journal of peptide and protein research.

[181]  Alan R. Fersht,et al.  Capping and α-helix stability , 1989, Nature.

[182]  R. L. Baldwin,et al.  The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. , 1993, Biochemistry.