Tunable Magnetocaloric Effect in Ni-Mn-Ga Microwires

[1]  L. Geng,et al.  Enhanced magnetic refrigeration capacity in Ni-Mn-Ga micro-particles , 2018, Materials & Design.

[2]  Victorino Franco,et al.  Magnetocaloric effect: From materials research to refrigeration devices , 2018 .

[3]  Peter G. Martin,et al.  Compressive deformation of polycrystalline Ni-Mn-Ga alloys near chemical ordering transition temperature , 2018 .

[4]  Jianfei Sun,et al.  Enhanced magnetocaloric effects of Ni-Fe-Mn-Sn alloys involving strong metamagnetic behavior , 2017 .

[5]  A. Mar,et al.  Effect of Cu substitution on magnetocaloric and critical behavior in Ni47Mn40Sn13−xCux alloys , 2017 .

[6]  Jianfei Sun,et al.  Magnetocaloric effect of Ni-Fe-Mn-Sn microwires prepared by melt-extraction technique , 2017 .

[7]  Chengbao Jiang,et al.  Influence of annealing temperatures on the magnetostructural transition and magnetocaloric effect of Ni40Co10Mn40Sn10 powders , 2017 .

[8]  Peter G. Martin,et al.  Microstructural evolution of Ni–Mn–Ga microwires during the melt-extraction process , 2016 .

[9]  Jianfei Sun,et al.  Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires , 2016 .

[10]  H. Suo,et al.  Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy , 2016 .

[11]  L. Geng,et al.  Effect of chemical ordering annealing on martensitic transformation and superelasticity in polycrystalline Ni–Mn–Ga microwires , 2015 .

[12]  Jian Zhang,et al.  Enhanced large magnetic entropy change and adiabatic temperature change of Ni43Mn46Sn11 alloys by a rapid solidification method , 2015 .

[13]  D. Zheng,et al.  Two successive magneto-structural transformations and their relation to enhanced magnetocaloric effect for Ni55.8Mn18.1Ga26.1 Heusler alloy , 2015, Scientific Reports.

[14]  Zhenxiang Cheng,et al.  Large entropy change accompanying two successive magnetic phase transitions in TbMn2Si2 for magnetic refrigeration , 2015 .

[15]  H. Suo,et al.  Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy , 2014 .

[16]  C. Esling,et al.  Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation , 2014 .

[17]  S. Dou,et al.  Enhancement of the refrigerant capacity in low level boron doped La0.8Gd0.2Fe11.4Si1.6 , 2013 .

[18]  T. Phan,et al.  Coexistence of conventional and inverse magnetocaloric effects and critical behaviors in Ni50Mn50−xSnx (x = 13 and 14) alloy ribbons , 2012 .

[19]  F. Hu,et al.  Magnetoresistance and magnetocaloric properties involving strong metamagnetic behavior in Fe-doped Ni45(Co1−xFex)5Mn36.6In13.4 alloys , 2012 .

[20]  G. Botton,et al.  Magnetocaloric effect in Ni-Mn-Ga thin films under concurrent magnetostructural and Curie transitions , 2011 .

[21]  S. Dou,et al.  Reduction of hysteresis losses in the magnetic refrigerant La0.8Ce0.2Fe11.4Si1.6 by the addition of boron , 2011 .

[22]  Christina H. Chen,et al.  Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient , 2011, Advanced materials.

[23]  L. Schultz,et al.  Novel Design of La(Fe,Si)13 Alloys Towards High Magnetic Refrigeration Performance , 2010, Advanced materials.

[24]  X. Chaud,et al.  Large inverse magnetocaloric effect in Ni45Co5Mn37.5In12.5 single crystal above 300 K , 2010 .

[25]  E. Brück,et al.  On the determination of the magnetic entropy change in materials with first-order transitions , 2009 .

[26]  M. Ohtsuka,et al.  Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni―Mn―Ga thin films , 2009 .

[27]  D. Dunand,et al.  Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams. , 2009, Nature materials.

[28]  V. Chandrasekaran,et al.  Microstructure, magnetic properties and magnetocaloric effect in melt-spun Ni–Mn–Ga ribbons , 2009 .

[29]  F. Passaretti,et al.  Crystal structure of 7M modulated Ni–Mn–Ga martensitic phase , 2008 .

[30]  V. Sharma,et al.  Thermomagnetic history dependence of magnetocaloric effect in Ni50Mn34In16 , 2008 .

[31]  P. Tiwari,et al.  Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16 , 2007 .

[32]  V. Sharma,et al.  Large inverse magnetocaloric effect in Ni50Mn34In16 , 2007 .

[33]  Gwyn P. Williams,et al.  Phase transitions and the magnetocaloric effect in Mn rich Ni–Mn–Ga Heusler alloys , 2006 .

[34]  Mahmud Tareq Hassan Khan,et al.  Magnetocaloric Properties of Ni2Mn1−xCuxGa , 2006 .

[35]  Robert D. Shull,et al.  Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron , 2004, Nature.

[36]  L. Mañosa,et al.  Multiscale origin of the magnetocaloric effect in Ni-Mn-Ga shape-memory alloys , 2003 .

[37]  R. Chahine,et al.  Composite materials for Ericsson-like magnetic refrigeration cycle , 1997 .

[38]  V. V. Kokorin,et al.  The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system , 1995 .

[39]  M. Sahashi,et al.  New application of complex magnetic materials to the magnetic refrigerant in an Ericsson magnetic refrigerator , 1987 .

[40]  X. Zhong,et al.  Achieving table-like magnetocaloric effect and large refrigerant capacity around room temperature in Fe78−xCexSi4Nb5B12Cu1 (x=0–10) composite materials , 2015 .

[41]  F. Bolzoni,et al.  From direct to inverse giant magnetocaloric effect in Co-doped NiMnGa multifunctional alloys , 2011 .