Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions

For bilinear infinite-dimensional dynamical systems, we show the equivalence between uniform global asymptotic stability and integral input-to-state stability. We provide two proofs of this fact. One applies to general systems over Banach spaces. The other is restricted to Hilbert spaces, but is more constructive and results in an explicit form of iISS Lyapunov functions.

[1]  Zhong-Ping Jiang,et al.  A generalization of the nonlinear small-gain theorem for large-scale complex systems , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[2]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[3]  Eduardo D. Sontag,et al.  A small-gain theorem with applications to input/output systems, incremental stability, detectability, and interconnections , 2002, J. Frankl. Inst..

[4]  Hiroshi Ito,et al.  A Lyapunov Approach to Cascade Interconnection of Integral Input-to-State Stable Systems , 2010, IEEE Transactions on Automatic Control.

[5]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[6]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[7]  H. Logemann,et al.  The Circle Criterion and Input-to-State Stability , 2011, IEEE Control Systems.

[8]  Hartmut Logemann Stabilization of Well-Posed Infinite-Dimensional Systems by Dynamic Sampled-Data Feedback , 2013, SIAM J. Control. Optim..

[9]  T. Sideris Ordinary Differential Equations and Dynamical Systems , 2013 .

[10]  Zhong-Ping Jiang,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999 .

[11]  Zhong-Ping Jiang,et al.  A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems , 1996, Autom..

[12]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[13]  Sergey Dashkovskiy,et al.  On the uniform input-to-state stability of reaction-diffusion systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[14]  Eduardo Sontag Input to State Stability: Basic Concepts and Results , 2008 .

[15]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[16]  Fabian R. Wirth,et al.  An ISS small gain theorem for general networks , 2007, Math. Control. Signals Syst..

[17]  Hiroshi Ito,et al.  Construction of Lyapunov Functions for Interconnected Parabolic Systems: An iISS Approach , 2014, SIAM J. Control. Optim..

[18]  Sergey Dashkovskiy,et al.  Input-to-state stability of infinite-dimensional control systems , 2012, Mathematics of Control, Signals, and Systems.

[19]  Alessandro Astolfi,et al.  A tight small gain theorem for not necessarily ISS systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  Kellen Petersen August Real Analysis , 2009 .

[21]  Josip Pečarić,et al.  Inequalities Involving Functions and Their Integrals and Derivatives , 1991 .

[22]  F. Mazenc,et al.  Strict Lyapunov functions for semilinear parabolic partial differential equations , 2011 .

[23]  Zhong-Ping Jiang,et al.  Robust Stability of Networks of iISS Systems: Construction of Sum-Type Lyapunov Functions , 2013, IEEE Transactions on Automatic Control.

[24]  Andrii Mironchenko Local input-to-state stability: Characterizations and counterexamples , 2016, Syst. Control. Lett..

[25]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[26]  SERGEY DASHKOVSKIY,et al.  Input-to-State Stability of Nonlinear Impulsive Systems , 2012, SIAM J. Control. Optim..

[27]  Victor M. Becerra,et al.  Optimal control , 2008, Scholarpedia.

[28]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[29]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[30]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[31]  Hiroshi Ito,et al.  Integral input-to-state stability of bilinear infinite-dimensional systems , 2014, 53rd IEEE Conference on Decision and Control.

[32]  Ulrich Eggers,et al.  Introduction To Infinite Dimensional Linear Systems Theory , 2016 .

[33]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[34]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[35]  Zhong-Ping Jiang,et al.  A new small‐gain theorem with an application to the stabilization of the chemostat , 2012 .

[36]  P. Pepe,et al.  A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems , 2006, Syst. Control. Lett..

[37]  Hiroshi Ito,et al.  State-Dependent Scaling Problems and Stability of Interconnected iISS and ISS Systems , 2006, IEEE Transactions on Automatic Control.

[38]  Frédéric Mazenc,et al.  ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws , 2012, Mathematics of Control, Signals, and Systems.

[39]  Eduardo Sontag,et al.  Changing supply functions in input/state stable systems , 1995, IEEE Trans. Autom. Control..

[40]  Zhong-Ping Jiang,et al.  Necessary and Sufficient Small Gain Conditions for Integral Input-to-State Stable Systems: A Lyapunov Perspective , 2009, IEEE Transactions on Automatic Control.

[41]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[42]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[43]  KokotovićPetar,et al.  Survey Constructive nonlinear control , 2001 .

[44]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.