Theoretical Interpretations and Applications of Radial Basis Function Networks

Medical applications usually used Radial Basis Function Networks just as Artifl- cial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artiflcial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their correspond- ing learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains.

[1]  J. Simonoff Multivariate Density Estimation , 1996 .

[2]  Qinghua Zhang,et al.  Wavelet networks , 1992, IEEE Trans. Neural Networks.

[3]  Marco Botta,et al.  FONN: Combining First Order Logic with Connectionist Learning , 1997, ICML.

[4]  Tianping Chen,et al.  Approximation capability to functions of several variables, nonlinear functionals and operators by radial basis function neural networks , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[5]  S. Jonic,et al.  Three machine learning techniques for automatic determination of rules to control locomotion , 1999, IEEE Transactions on Biomedical Engineering.

[6]  Friedhelm Schwenker,et al.  Three learning phases for radial-basis-function networks , 2001, Neural Networks.

[7]  Simon Haykin,et al.  A dynamic regularized radial basis function network for nonlinear, nonstationary time series prediction , 1999, IEEE Trans. Signal Process..

[8]  Kurt Hornik,et al.  FEED FORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS , 1989 .

[9]  S. King Learning to fly. , 1998, Nursing Times.

[10]  Adam Krzyzak,et al.  On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size , 1994, Neural Networks.

[11]  Georg Dorffner,et al.  On using feedforward neural networks for clinical diagnostic tasks , 1994, Artif. Intell. Medicine.

[12]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[13]  Bernd Fritzke,et al.  Growing cell structures--A self-organizing network for unsupervised and supervised learning , 1994, Neural Networks.

[14]  Marco Botta,et al.  SMART+: A Multi-Strategy Learning Tool , 1993, IJCAI.

[15]  H. Tazawa,et al.  Investigation of the nonlinearity in the heart rate dynamics. , 2001, Medical engineering & physics.

[17]  Sanjoy Das,et al.  Estimation of Spatiotemporal Neural Activity Using Radial Basis Function Networks , 1998, Journal of Computational Neuroscience.

[18]  Jooyoung Park,et al.  Approximation and Radial-Basis-Function Networks , 1993, Neural Computation.

[19]  Mark J. L. Orr,et al.  Regularization in the Selection of Radial Basis Function Centers , 1995, Neural Computation.

[20]  Adam Krzyzak,et al.  Radial Basis Function Networks and Complexity Regularization in Function Learning , 2022 .

[21]  Volker Tresp,et al.  Network Structuring and Training Using Rule-Based Knowledge , 1992, NIPS.

[22]  J. R. Quinlan,et al.  Induction over large data bases , 1979 .

[23]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[24]  M. Kubat,et al.  Decision trees can initialize radial-basis function networks , 1998, IEEE Trans. Neural Networks.

[25]  Fred Henrik Hamker,et al.  Life-long learning Cell Structures--continuously learning without catastrophic interference , 2001, Neural Networks.

[26]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[27]  Qinghua Zhang,et al.  Using wavelet network in nonparametric estimation , 1997, IEEE Trans. Neural Networks.

[28]  A. Karimi,et al.  Master‟s thesis , 2011 .

[29]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[30]  David Saad,et al.  Online Learning in Radial Basis Function Networks , 1997, Neural Computation.

[31]  Bani K. Mallick,et al.  Bayesian wavelet networks for nonparametric regression , 2000, IEEE Trans. Neural Networks Learn. Syst..

[32]  Nikola K. Kasabov,et al.  HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems , 1999, Neural Networks.

[33]  Volker Tresp,et al.  Representing Probabilistic Rules with Networks of Gaussian Basis Functions , 1997, Machine Learning.

[34]  Leonardo Maria Reyneri Unification of neural and wavelet networks and fuzzy systems , 1999, IEEE Trans. Neural Networks.

[35]  Li Liu,et al.  Neural network modeling for surgical decisions on traumatic brain injury patients , 2000, Int. J. Medical Informatics.

[36]  D. F. Specht,et al.  Probabilistic neural networks for classification, mapping, or associative memory , 1988, IEEE 1988 International Conference on Neural Networks.

[37]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[38]  Enrico Blanzieri,et al.  Mapping Symbolic Knowledge into Locally Receptive Field Networks , 1995, AI*IA.

[39]  C. C. Homes,et al.  Bayesian Radial Basis Functions of Variable Dimension , 1998, Neural Computation.

[40]  Anna Esposito,et al.  Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm , 2000, Neural Networks.

[41]  Anastasios Bezerianos,et al.  Radial basis function neural networks for the characterization of heart rate variability dynamics , 1999, Artif. Intell. Medicine.

[42]  Mário A. T. Figueiredo On Gaussian radial basis function approximations: interpretation, extensions, and learning strategies , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[43]  Attilio Giordana,et al.  On Some Misbehaviour of Back-Propagation with Non-Normalized RBFNs and a Solution , 1999, ICML.

[44]  P. Frasconi,et al.  Representation of Finite State Automata in Recurrent Radial Basis Function Networks , 1996, Machine Learning.

[45]  Paolo Frasconi,et al.  Learning without local minima in radial basis function networks , 1995, IEEE Trans. Neural Networks.

[46]  David J. Miller,et al.  Combined Learning and Use for a Mixture Model Equivalent to the RBF Classifier , 1998, Neural Computation.

[47]  Chuen-Tsai Sun,et al.  Functional equivalence between radial basis function networks and fuzzy inference systems , 1993, IEEE Trans. Neural Networks.

[48]  Dingli Yu,et al.  Selecting radial basis function network centers with recursive orthogonal least squares training , 2000, IEEE Trans. Neural Networks Learn. Syst..

[49]  Paul E. Utgoff,et al.  ID5: An Incremental ID3 , 1987, ML.

[50]  Jude W. Shavlik,et al.  Knowledge-Based Artificial Neural Networks , 1994, Artif. Intell..

[51]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[52]  Anastasios Bezerianos,et al.  Nonlinear analysis of the performance and reliability of wavelet singularity detection based denoising for doppler ultrasound fetal heart rate signals , 1999, Int. J. Medical Informatics.

[53]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[54]  Enrico Blanzieri,et al.  Learning Radial Basis Function Networks On-line , 1996, International Conference on Machine Learning.

[55]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[56]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[57]  Silvia Scarpetta,et al.  On-line learning in RBF neural networks: a stochastic approach , 2000, Neural Networks.

[58]  Juan José Rodríguez Diez,et al.  Learning Classification RBF Networks by Boosting , 2001, Multiple Classifier Systems.

[59]  Ioannis Pitas,et al.  Median radial basis function neural network , 1996, IEEE Trans. Neural Networks.

[60]  Simon Haykin,et al.  Neural networks , 1994 .

[61]  C Brohet,et al.  Possibilities of using neural networks for ECG classification. , 1996, Journal of electrocardiology.

[62]  Jf Baldwin,et al.  An Introduction to Fuzzy Logic Applications in Intelligent Systems , 1992 .

[63]  Enrico Blanzieri,et al.  Exploiting Classifier Combination for Early Melanoma Diagnosis Support , 2000, ECML.

[64]  Cristina Baroglio,et al.  Learning Controllers for Industrial Robots , 2005, Machine Learning.

[65]  Luigi Grippo,et al.  Convergent Decomposition Techniques for Training RBF Neural Networks , 2001, Neural Computation.

[66]  MARIJKE F. AUGUSTEIJN,et al.  Radical Pruning: A Method to Construct Skeleton Radial Basis Function Networks , 2000, Int. J. Neural Syst..

[67]  Shang-Liang Chen,et al.  Orthogonal least squares learning algorithm for radial basis function networks , 1991, IEEE Trans. Neural Networks.

[68]  Andrew R. Webb,et al.  Shape-adaptive radial basis functions , 1998, IEEE Trans. Neural Networks.

[69]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[70]  Jacek M. Zurada,et al.  Knowledge-based neurocomputing , 2000 .

[71]  Lucila Ohno-Machado,et al.  A Comparison of Machine Learning Methods for the Diagnosis of Pigmented Skin Lesions , 2001, J. Biomed. Informatics.

[72]  Witold Pedrycz,et al.  Conditional fuzzy clustering in the design of radial basis function neural networks , 1998, IEEE Trans. Neural Networks.

[73]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[74]  Bruce A. Whitehead,et al.  Evolving space-filling curves to distribute radial basis functions over an input space , 1994, IEEE Trans. Neural Networks.

[75]  H. R. Berenji,et al.  Fuzzy Logic Controllers , 1992 .

[76]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[77]  Zekeriya Uykan,et al.  Analysis of input-output clustering for determining centers of RBFN , 2000, IEEE Trans. Neural Networks Learn. Syst..

[78]  Bernd Fritzke,et al.  A Growing Neural Gas Network Learns Topologies , 1994, NIPS.

[79]  Enrico Blanzieri,et al.  A multiple classifier system for early melanoma diagnosis , 2003, Artif. Intell. Medicine.

[80]  José del R. Millán,et al.  Learning efficient reactive behavioral sequences from basic reflexes in a goal-directed autonomous robot , 1994 .

[81]  Visakan Kadirkamanathan,et al.  A Function Estimation Approach to Sequential Learning with Neural Networks , 1993, Neural Computation.

[82]  Lianfen Qian,et al.  Regularized Radial Basis Function Networks: Theory and Applications , 2002, Technometrics.

[83]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[84]  Tao Zhu,et al.  An efficient learning algorithm for improving generalization performance of radial basis function neural networks , 2000, Neural Networks.

[85]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[86]  Kagan Tumer,et al.  Ensembles of radial basis function networks for spectroscopic detection of cervical precancer , 1998, IEEE Transactions on Biomedical Engineering.