Fundamentals and Applications of MAPLE

Matrix-assisted pulsed laser evaporation (MAPLE) is an evolution of the pulsed laser deposition (PLD) technique. MAPLE preserves the advantages of the PLD technique (versatility, ease of use, high deposition rates) but in addition offers a gentle mechanism to transfer easy-to-decompose materials from the condensed phase into the vapor phase. The material of interest (polymers, biological cells, proteins, etc.) is diluted in a volatile, noninteracting (even under laser irradiation) solvent with a typical concentration of a few weight percent and frozen at the liquid nitrogen temperature. The frozen target is irradiated with a pulsed laser beam, whose energy is principally absorbed by the solvent and converted into thermal energy, allowing the solvent to vaporize. The molecules of the material of interest receive enough kinetic energy through collective collisions with the evaporating solvent to be transferred in the gas phase and finally deposited on a suitable substrate. Here, important results of MAPLE deposition of polymers are illustrated, and a novel application is presented: MAPLE deposition of nanoparticles and nanoparticle films. Finally, fundamentals of the MAPLE mechanism are discussed.

[1]  L. Vicari,et al.  Matrix-Assisted Pulsed Laser Evaporation of polythiophene films , 2008 .

[2]  A. N. Chandorkar,et al.  Response study of electron-beam evaporated thin-film tin oxide gas sensors , 1992 .

[3]  Steven G. Hansen,et al.  Arrival time measurements of films formed by pulsed laser evaporation of polycarbonate and selenium , 1988 .

[4]  M. Senna,et al.  Preparation and properties of bovine serum albumin thin films by pulsed laser deposition , 2005 .

[5]  A. Luches,et al.  Matrix-assisted pulsed laser evaporation of polyfluorene thin films , 2007 .

[6]  Pietro Siciliano,et al.  Synthesis of SnO2 and ZnO Colloidal Nanocrystals from the Decomposition of Tin(II) 2-Ethylhexanoate and Zinc(II) 2-Ethylhexanoate , 2005 .

[7]  T. Chong,et al.  Growth of β-Ga2O3 nanoparticles by pulsed laser ablation technique , 2004 .

[8]  R. A. McGill,et al.  The effect of the matrix on film properties in matrix-assisted pulsed laser evaporation , 2002 .

[9]  Kurt W. Kolasinski,et al.  Surface Science: Foundations of Catalysis and Nanoscience , 2002 .

[10]  M. Karas,et al.  Matrix-assisted ultraviolet laser desorption of non-volatile compounds , 1987 .

[11]  T. Egawa,et al.  Formation Mechanism for High-Surface-Area Anatase Titania Nanoparticles Prepared by Metalorganic Chemical Vapor Deposition , 2004 .

[12]  R. A. McGill,et al.  Novel Laser-Based Deposition of Active Protein Thin Films , 2001 .

[13]  Donal D. C. Bradley,et al.  Exciton migration in β -phase poly(9,9-dioctylfluorene) , 2003 .

[14]  Giovanni Neri,et al.  Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing. , 2004, Angewandte Chemie.

[15]  Soumen Das,et al.  Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process , 2006 .

[16]  D. Harrison,et al.  Preparation of active Langmuir-Blodgett films of glucose oxidase , 1991 .

[17]  K. Kolasinski Comprar Surface Science: Foundations of Catalysis and Nanoscience | Kurt Kolasinski | 9780470033043 | Wiley , 2008 .

[18]  D. Chrisey,et al.  Functionalized polysiloxane thin films deposited by matrix-assisted pulsed laser evaporation for advanced chemical sensor applications , 2006 .

[19]  M. Yudasaka,et al.  Polyperinaphthalene film formation by pulsed laser deposition with a target of perylenetetracarboxylic dianhydride , 1994 .

[20]  Reinhard Schwödiauer,et al.  Charge stability of pulsed-laser deposited polytetrafluoroethylene film electrets , 1998 .

[21]  M. Grell,et al.  Understanding the Origin of the 535 nm Emission Band in Oxidized Poly(9,9‐dioctylfluorene): The Essential Role of Inter‐Chain/Inter‐Segment Interactions , 2004 .

[22]  Donal D. C. Bradley,et al.  High brightness and efficiency blue light-emitting polymer diodes , 1998 .

[23]  R. A. McGill,et al.  Performance optimization of surface acoustic wave chemical sensors , 1998 .

[24]  Salvatore Amoruso,et al.  Generation of silicon nanoparticles via femtosecond laser ablation in vacuum , 2004 .

[25]  J. M. Fitz-Gerald,et al.  Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films , 2005 .

[26]  Tatiana Itina,et al.  Matrix-assisted pulsed laser evaporation of polymeric materials: a molecular dynamics study , 2001 .

[27]  R. A. McGill,et al.  Laser deposition of polymer and biomaterial films. , 2003, Chemical reviews.

[28]  Young Seok Kim,et al.  Syntheses of monodispersed SnO2 and CeO2 nanoparticles through the self-capping role of 2-ethylhexanoate ligands , 2007 .

[29]  G. Hubler,et al.  Pulsed Laser Deposition of Thin Films , 2003, Handbook of Laser Technology and Applications.

[30]  A. Mahammed,et al.  Albumin-conjugated corrole metal complexes: extremely simple yet very efficient biomimetic oxidation systems. , 2005, Journal of the American Chemical Society.

[31]  J. Schou,et al.  High laser-fluence deposition of organic materials in water ice matrices by “MAPLE” , 2005 .

[32]  I. Stamatin,et al.  Deposition of biopolymer thin films by matrix assisted pulsed laser evaporation , 2004 .

[33]  J. Schou,et al.  Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): Dependence on substrate temperature , 2006 .

[34]  R. A. McGill,et al.  Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write , 2003 .

[35]  R. Cingolani,et al.  Microscopic investigation of the poly(9,9-dioctylfluorene) photoluminescence dependence on the deposition conditions by confocal laser microscopy , 2006 .

[36]  L. Zhigilei,et al.  Substrate-Assisted Laser-Initiated Ejection of Proteins Embedded in Water Films , 2003 .

[37]  Feng Gu,et al.  Synthesis and luminescence properties of SnO2 nanoparticles , 2003 .

[38]  L. Scriven Physics and Applications of DIP Coating and Spin Coating , 1988 .

[39]  M. Vrnata,et al.  Thin organic layers prepared by MAPLE for gas sensor application , 2006, 2006 Conference on Optoelectronic and Microelectronic Materials and Devices.

[40]  S. Shah,et al.  Deposition of polytetrafluoroethylene films by laser ablation , 1993 .

[41]  D. S. Vlachos,et al.  Gas detection sensitivity and cluster size , 1998 .

[42]  L. Zhigilei,et al.  Laser processing of polymer nanocomposite thin films , 2006 .

[43]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[44]  S. Nishio,et al.  Control of structures of deposited polymer films by ablation laser wavelength: Polyacrylonitrile at 308, 248, and 193 nm , 1996 .

[45]  Tatiana Itina,et al.  Microscopic Mechanisms of Matrix Assisted Laser Desorption of Analyte Molecules: Insights from Molecular Dynamics Simulation , 2002 .

[46]  Piers Andrew,et al.  Emission Characteristics and Performance Comparison of Polyfluorene Lasers with One‐ and Two‐Dimensional Distributed Feedback , 2004 .

[47]  Edson R. Leite,et al.  Photoluminescence in quantum-confined SnO2 nanocrystals: Evidence of free exciton decay , 2004 .

[48]  D. Bäuerle Laser Processing and Chemistry , 1996 .

[49]  S. Shah,et al.  Laser Ablation and the Production of Polymer Films , 1993, Science.

[50]  R. A. McGill,et al.  Processing of functional polymers and organic thin films by the matrix-assisted pulsed laser evaporation (MAPLE) technique , 2002 .

[51]  Paulo J. G. Coutinho,et al.  Characterization of TiO2 Nanoparticles in Langmuir-Blodgett Films , 2006, Journal of Fluorescence.

[52]  G. Blanchet Deposition of Poly(methyl methacrylate) Films by UV Laser Ablation , 1995 .

[53]  B. D. Malhotra,et al.  Vacuum‐deposited metal/polyaniline Schottky device , 1992 .

[54]  D. Modarelli,et al.  Photophysical properties of a series of free-base corroles. , 2005, The journal of physical chemistry. A.

[55]  Yoshiaki Suda,et al.  Properties of palladium doped tin oxide thin films for gas sensors grown by PLD method combined with sputtering process , 2003 .

[56]  Robert W. Eason,et al.  Pulsed laser deposition of thin films : applications-led growth of functional materials , 2006 .

[57]  M. G. Manera,et al.  MAPLE deposition of methoxy Ge triphenylcorrole thin films , 2008 .

[58]  W. Dehaen,et al.  Corroles as receptors in liquid membrane electrodes and their potentiometric response towards salicylic acid , 2006 .

[59]  I. Fujiwara,et al.  Atomic force microscopy study of protein-incorporating Langmuir-Blodgett films , 1992 .

[60]  L. Zhigilei,et al.  Molecular dynamics simulation study of the ejection and transport of polymer molecules in matrix-assisted pulsed laser evaporation , 2007 .

[61]  A. Köhler,et al.  Morphology-dependent energy transfer within polyfluorene thin films , 2004 .

[62]  G. Horowitz,et al.  Growth of polyalkylthiophene films by matrix assisted pulsed laser evaporation , 2004 .

[63]  Louis E. Brus,et al.  Electron-electron and electron-hole interactions in small semiconductor crystallites : The size dependence of the lowest excited electronic state , 1984 .

[64]  James J. O'Brien,et al.  Progress with Light‐Emitting Polymers , 2000 .

[65]  E. M. Calzado,et al.  Tuneability of amplified spontaneous emission through control of the thickness in organic-based waveguides , 2005 .

[66]  L. Zhigilei,et al.  Ejection of matrix-polymer clusters in matrix-assisted laser evaporation: Experimental observations , 2007 .

[67]  R. A. McGill,et al.  Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique , 1999 .

[68]  Kevin M. Smith,et al.  Synthesis and Functionalization of Germanium Triphenylcorrolate: The First Example of a Partially Brominated Corrole , 2007 .

[69]  P. Polavarapu,et al.  Vibrational circular dichroism spectra of protein films: thermal denaturation of bovine serum albumin. , 2004, Biophysical chemistry.

[70]  Francesco Giacalone,et al.  Concentration dependence of amplified spontaneous emission in two oligo-(p-phenylenevinylene) derivatives , 2005 .