From the Wet Lab to the Web Lab: A Paradigm Shift in Brain Imaging Research

Web technology has transformed our lives, and has led to a paradigm shift in the computational sciences. As the neuroimaging informatics research community amasses large datasets to answer complex neuroscience questions, we find that the web is the best medium to facilitate novel insights by way of improved collaboration and communication. Here, we review the landscape of web technologies used in neuroimaging research, and discuss future applications, areas for improvement, and the limitations of using web technology in research. Fully incorporating web technology in our research lifecycle requires not only technical skill, but a widespread culture change; a shift from the small, focused “wet lab” to a multidisciplinary and largely collaborative “web lab.”

[1]  Danilo Bzdok,et al.  The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data , 2011, BMC Research Notes.

[2]  C. Tenopir,et al.  Data Sharing by Scientists: Practices and Perceptions , 2011, PloS one.

[3]  Stephen C. Strother,et al.  Brain-CODE: A Secure Neuroinformatics Platform for Management, Federation, Sharing and Analysis of Multi-Dimensional Neuroscience Data , 2018, Front. Neuroinform..

[4]  Jessica A. Turner,et al.  Sharing the wealth: Neuroimaging data repositories , 2016, NeuroImage.

[5]  Michael Eickenberg,et al.  Machine learning for neuroimaging with scikit-learn , 2014, Front. Neuroinform..

[6]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[7]  Haehn Daniel,et al.  Neuroimaging in the Browser using the X Toolkit , 2014 .

[8]  Satrajit S. Ghosh,et al.  Open Neuroimaging Laboratory , 2016 .

[9]  Adam Eyre-Walker,et al.  Research groups: How big should they be? , 2015, PeerJ.

[10]  Russell A. Poldrack,et al.  Crowdsourced MRI quality metrics and expert quality annotations for training of humans and machines , 2018 .

[11]  Krzysztof J. Gorgolewski,et al.  MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites , 2016, bioRxiv.

[12]  Matthew Jones,et al.  Maximizing the Value of Ecological Data with Structured Metadata: An Introduction to Ecological Metadata Language (EML) and Principles for Metadata Creation , 2005 .

[13]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[14]  Alan C. Evans,et al.  BrainBrowser: distributed, web-based neurological data visualization , 2015, Front. Neuroinform..

[15]  Satrajit S. Ghosh,et al.  The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments , 2016, Scientific Data.

[16]  G. Caldarelli,et al.  The spreading of misinformation online , 2016, Proceedings of the National Academy of Sciences.

[17]  Randy L. Gollub,et al.  Reusable Client-Side JavaScript Modules for Immersive Web-Based Real-Time Collaborative Neuroimage Visualization , 2017, Front. Neuroinform..

[18]  David P Bauer,et al.  Quanti.us: a tool for rapid, flexible, crowd-based annotation of images , 2018, Nature Methods.

[19]  Anand D. Sarwate,et al.  NEUROINFORMATICS Sharing privacy-sensitive access to neuroimaging and genetics data : a review and preliminary validation , 2018 .

[20]  Arthur W. Toga,et al.  Is it time to re-prioritize neuroimaging databases and digital repositories? , 2009, NeuroImage.

[21]  Satrajit S. Ghosh,et al.  BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods , 2016, bioRxiv.

[22]  Christopher R. Madan Beyond the ivory tower: reciprocal relationships between scientific research, communication, and mentorship , 2017 .

[23]  F. Collins,et al.  Policy: NIH plans to enhance reproducibility , 2014, Nature.

[24]  Eduard T. Klapwijk,et al.  Qoala-T: A supervised-learning tool for quality control of FreeSurfer segmented MRI data , 2019, NeuroImage.

[25]  Bharat B. Biswal,et al.  Making data sharing work: The FCP/INDI experience , 2013, NeuroImage.

[26]  Anthony Arendt,et al.  Hack weeks as a model for data science education and collaboration , 2017, Proceedings of the National Academy of Sciences.

[27]  David B. Keator,et al.  A National Human Neuroimaging Collaboratory Enabled by the Biomedical Informatics Research Network (BIRN) , 2008, IEEE Transactions on Information Technology in Biomedicine.

[28]  Maxime Descoteaux,et al.  Dipy, a library for the analysis of diffusion MRI data , 2014, Front. Neuroinform..

[29]  Marcia McNutt,et al.  Data sharing , 2016, Science.

[30]  Russell A. Poldrack,et al.  The ethics of secondary data analysis: Considering the application of Belmont principles to the sharing of neuroimaging data , 2013, NeuroImage.

[31]  Judy Illes,et al.  Neurotalk: improving the communication of neuroscience research , 2010, Nature Reviews Neuroscience.

[32]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[33]  Jane Hunter,et al.  Formal Acknowledgement of Citizen Scientists' Contributions via Dynamic Data Citations , 2015, ICADL.

[34]  Krzysztof J. Gorgolewski,et al.  OpenNeuro – a free online platform for sharing and analysis of neuroimaging data , 2017 .

[35]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[36]  Daniel S. Margulies,et al.  NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain , 2014, bioRxiv.

[37]  Oluwasanmi Koyejo,et al.  Toward open sharing of task-based fMRI data: the OpenfMRI project , 2013, Front. Neuroinform..

[38]  Krzysztof J. Gorgolewski,et al.  Making big data open: data sharing in neuroimaging , 2014, Nature Neuroscience.

[39]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[40]  Howard Bauchner,et al.  Data Sharing: An Ethical and Scientific Imperative. , 2016, JAMA.

[41]  T. Yarkoni Big Correlations in Little Studies: Inflated fMRI Correlations Reflect Low Statistical Power—Commentary on Vul et al. (2009) , 2009, Perspectives on psychological science : a journal of the Association for Psychological Science.

[42]  Satrajit S. Ghosh,et al.  Mindboggling morphometry of human brains , 2016, bioRxiv.

[43]  Jessica A. Turner,et al.  COINS: An Innovative Informatics and Neuroimaging Tool Suite Built for Large Heterogeneous Datasets , 2011, Front. Neuroinform..

[44]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[45]  Arno Klein,et al.  Interactive online brain shape visualization , 2016, bioRxiv.

[46]  Michael S. Gazzaniga,et al.  Why share data? Lessons learned from the fMRIDC , 2013, NeuroImage.

[47]  Jessica B. Hamrick,et al.  psiTurk: An open-source framework for conducting replicable behavioral experiments online , 2016, Behavior research methods.

[48]  Tim Head,et al.  Binder 2.0 - Reproducible, interactive, sharable environments for science at scale , 2018, SciPy.

[49]  Thomas E. Nichols,et al.  The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data , 2014, Brain Imaging and Behavior.

[50]  Russell A. Poldrack,et al.  The Experiment Factory: Standardizing Behavioral Experiments , 2016, Front. Psychol..

[51]  F. Collins,et al.  NIH plans to enhance reproducibility , 2014 .

[52]  Alan C. Evans,et al.  OMEGA: The Open MEG Archive , 2016, NeuroImage.

[53]  David L Donoho,et al.  An invitation to reproducible computational research. , 2010, Biostatistics.

[54]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[55]  Christopher R. Madan,et al.  Advances in Studying Brain Morphology: The Benefits of Open-Access Data , 2017, Front. Hum. Neurosci..

[56]  Tristan Glatard,et al.  CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research , 2014, Front. Neuroinform..

[57]  Richard Van Noorden Trouble at the text mine , 2012, Nature.

[58]  Michaela Willi-Hooper,et al.  Is the staggeringly profitable business of scientific publishing bad for science , 2017 .

[59]  Alan C. Evans,et al.  LORIS: a web-based data management system for multi-center studies , 2012, Front. Neuroinform..

[60]  Mary Baker,et al.  A fresh look at the reliability of long-term digital storage , 2005, EuroSys.

[61]  Alan N. Miller,et al.  Publish or Perish , 2005 .

[62]  G. Eslick,et al.  Vaccines are not associated with autism: an evidence-based meta-analysis of case-control and cohort studies. , 2014, Vaccine.

[63]  Ariel Rokem,et al.  Combining Citizen Science and Deep Learning to Amplify Expertise in Neuroimaging , 2018, bioRxiv.

[64]  Martin Styner,et al.  Objective Evaluation of Multiple Sclerosis Lesion Segmentation using a Data Management and Processing Infrastructure , 2018, bioRxiv.

[65]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[66]  B. Wandell,et al.  Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification , 2012, PloS one.

[67]  Trish Whetzel,et al.  SciCrunch: A Cooperative and Collaborative Data and Resource Discovery Platform for Scientific Communities , 2014, ICBO.

[68]  David De Roure,et al.  Zooniverse: observing the world's largest citizen science platform , 2014, WWW.

[69]  M. Ragan-Kelley,et al.  The Jupyter/IPython architecture: a unified view of computational research, from interactive exploration to communication and publication. , 2014 .

[70]  Anisha Keshavan,et al.  Mindcontrol: A web application for brain segmentation quality control , 2016, NeuroImage.

[71]  Anthony M. Castronova,et al.  Models as web services using the Open Geospatial Consortium (OGC) Web Processing Service (WPS) standard , 2013, Environ. Model. Softw..

[72]  Satrajit S. Ghosh,et al.  Data sharing in neuroimaging research , 2012, Front. Neuroinform..

[73]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[74]  Vitaly Shmatikov,et al.  Robust De-anonymization of Large Sparse Datasets , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[75]  Adam Richie-Halford,et al.  A browser-based tool for visualization and analysis of diffusion MRI data , 2018, Nature Communications.

[76]  David B. Keator,et al.  SchizConnect: Mediating neuroimaging databases on schizophrenia and related disorders for large-scale integration , 2016, NeuroImage.

[77]  Jorge L. Contreras,et al.  Bermuda's Legacy: Policy, Patents and the Design of the Genome Commons , 2010 .

[78]  Giuseppe Testa,et al.  Scrutinizing the EU General Data Protection Regulation , 2018, Science.

[79]  C. Jack,et al.  Alzheimer's Disease Neuroimaging Initiative , 2008 .

[80]  Russell A. Poldrack,et al.  Large-scale automated synthesis of human functional neuroimaging data , 2011, Nature Methods.

[81]  Vinton G. Cerf,et al.  Avoiding "Bit Rot": Long-Term Preservation of Digital Information [Point of View] , 2011 .

[82]  Zoran Popović,et al.  Power to the People: Addressing Big Data Challenges in Neuroscience by Creating a New Cadre of Citizen Neuroscientists , 2016, Neuron.

[83]  Lena Maier-Hein,et al.  Crowdsourcing for error detection in cortical surface delineations , 2016, International Journal of Computer Assisted Radiology and Surgery.

[84]  Dennis Shasha,et al.  ReproZip: Computational Reproducibility With Ease , 2016, SIGMOD Conference.

[85]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[86]  Ron Kikinis,et al.  The Open Anatomy Browser: A Collaborative Web-Based Viewer for Interoperable Anatomy Atlases , 2017, Front. Neuroinform..

[87]  Jevin D. West,et al.  Echo Chambers in Science? , 2017 .

[88]  Annamaria Conti,et al.  Bringing the lab back in: Personnel composition and scientific output at the MIT Department of Biology , 2015 .

[89]  Derek Bok,et al.  Beyond the Ivory Tower , 1982 .

[90]  Holly M. Bik,et al.  An Introduction to Social Media for Scientists , 2013, PLoS biology.

[91]  Y. de Montjoye,et al.  Unique in the shopping mall: On the reidentifiability of credit card metadata , 2015, Science.

[92]  Waltz,et al.  Descriptor : An open resource for transdiagnostic research in pediatric mental health and learning disorders , 2019 .