Structural Insight of the Full-Length Ros Protein: A Prototype of the Prokaryotic Zinc-Finger Family

[1]  A. Krężel,et al.  Structural zinc binding sites shaped for greater works: Structure-function relations in classical zinc finger, hook and clasp domains. , 2019, Journal of inorganic biochemistry.

[2]  L. Russo,et al.  Ni(II), Hg(II), and Pb(II) Coordination in the Prokaryotic Zinc-Finger Ros87. , 2018, Inorganic chemistry.

[3]  R. Roop,et al.  Identifying the region responsible for Brucella abortus MucR higher-order oligomer formation and examining its role in gene regulation , 2018, Scientific Reports.

[4]  E. Cuoco,et al.  Structural Characterization of the Lactobacillus Plantarum FlmC Protein Involved in Biofilm Formation , 2018, Molecules.

[5]  A. Krężel,et al.  Metal binding properties, stability and reactivity of zinc fingers , 2018, Coordination Chemistry Reviews.

[6]  R. Fattorusso,et al.  MucR binds multiple target sites in the promoter of its own gene and is a heat‐stable protein: Is MucR a H‐NS‐like protein? , 2018, FEBS open bio.

[7]  S. Gianni,et al.  Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc00166a , 2018, Chemical science.

[8]  G. Colombo,et al.  The Interplay between Structural Stability and Plasticity Determines Mutation Profiles and Chaperone Dependence in Protein Kinases. , 2018, Journal of chemical theory and computation.

[9]  L. Russo,et al.  Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy , 2017, Bioinorganic chemistry and applications.

[10]  A. Chambery,et al.  Ml proteins from Mesorhizobium loti and MucR from Brucella abortus: an AT-rich core DNA-target site and oligomerization ability , 2017, Scientific Reports.

[11]  M. Iuliano,et al.  fac‐[Re(H2O)3(CO)3]+ Complexed with Histidine and Imidazole in Aqueous Solution: Speciation, Affinity and Binding Features , 2016 .

[12]  L. Russo,et al.  The (unusual) aspartic acid in the metal coordination sphere of the prokaryotic zinc finger domain. , 2016, Journal of inorganic biochemistry.

[13]  Ziding Zhang,et al.  MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules. , 2016, Molecular plant-microbe interactions : MPMI.

[14]  L. Russo,et al.  The prokaryotic zinc‐finger: structure, function and comparison with the eukaryotic counterpart , 2015, The FEBS journal.

[15]  Kamila Rachwał,et al.  Genetic characterization of the Pss region and the role of PssS in exopolysaccharide production and symbiosis of Rhizobium leguminosarum bv. trifolii with clover , 2015, Plant and Soil.

[16]  Alexey Drozdetskiy,et al.  JPred4: a protein secondary structure prediction server , 2015, Nucleic Acids Res..

[17]  L. Russo,et al.  Towards understanding the molecular recognition process in prokaryotic zinc-finger domain. , 2015, European journal of medicinal chemistry.

[18]  A. Krężel,et al.  Relationship between the architecture of zinc coordination and zinc binding affinity in proteins--insights into zinc regulation. , 2015, Metallomics : integrated biometal science.

[19]  R. Fattorusso,et al.  Structural basis of a temporin 1b analogue antimicrobial activity against Gram negative bacteria determined by CD and NMR techniques in cellular environment. , 2015, ACS chemical biology.

[20]  G. Panis,et al.  Versatility of global transcriptional regulators in alpha-Proteobacteria: from essential cell cycle control to ancillary functions. , 2015, FEMS microbiology reviews.

[21]  L. Théraulaz,et al.  Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators , 2014, Nature Communications.

[22]  L. Russo,et al.  Molecular strategies to replace the structural metal site in the prokaryotic zinc finger domain. , 2014, Biochimica et biophysica acta.

[23]  G. Grasso,et al.  The clearance of misfolded proteins in neurodegenerative diseases by zinc metalloproteases: An inorganic perspective , 2014 .

[24]  D. Milardi,et al.  Deciphering the zinc coordination properties of the prokaryotic zinc finger domain: The solution structure characterization of Ros87 H42A functional mutant. , 2014, Journal of inorganic biochemistry.

[25]  D. Milardi,et al.  Zinc to cadmium replacement in the prokaryotic zinc-finger domain. , 2014, Metallomics : integrated biometal science.

[26]  Hao Dong,et al.  The effects of MucR on expression of type IV secretion system, quorum sensing system and stress responses in Brucella melitensis. , 2013, Veterinary microbiology.

[27]  A. Magrì,et al.  Zinc(II) interactions with brain-derived neurotrophic factor N-terminal peptide fragments: inorganic features and biological perspectives. , 2013, Inorganic chemistry.

[28]  N. Lartillot,et al.  An experimentally tested scenario for the structural evolution of eukaryotic Cys2His2 zinc fingers from eubacterial ros homologs. , 2013, Molecular biology and evolution.

[29]  G. Grimaldi,et al.  Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1 , 2013, FEBS letters.

[30]  D. Milardi,et al.  Structural Zn(II) implies a switch from fully cooperative to partly downhill folding in highly homologous proteins. , 2013, Journal of the American Chemical Society.

[31]  R. Zangi,et al.  Ribose 2'-Hydroxyl Groups Stabilize RNA Hairpin Structures Containing GCUAA Pentaloop. , 2013, Journal of chemical theory and computation.

[32]  R. Roop,et al.  Diverse Genetic Regulon of the Virulence-Associated Transcriptional Regulator MucR in Brucella abortus 2308 , 2013, Infection and Immunity.

[33]  J. Letesson,et al.  Brucella melitensis MucR, an Orthologue of Sinorhizobium meliloti MucR, Is Involved in Resistance to Oxidative, Detergent, and Saline Stresses and Cell Envelope Modifications , 2012, Journal of bacteriology.

[34]  R. Scandurra,et al.  Zinc to cadmium replacement in the A. thaliana SUPERMAN Cys₂ His₂ zinc finger induces structural rearrangements of typical DNA base determinant positions. , 2011, Biopolymers.

[35]  G. Arena,et al.  Zinc(II) complexes of ubiquitin: speciation, affinity and binding features. , 2011, Chemistry.

[36]  Juan E. González,et al.  Complex Regulation of Symbiotic Functions Is Coordinated by MucR and Quorum Sensing in Sinorhizobium meliloti , 2010, Journal of bacteriology.

[37]  M. Janczarek,et al.  Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment , 2010, BMC Microbiology.

[38]  S. Castang,et al.  High‐order oligomerization is required for the function of the H‐NS family member MvaT in Pseudomonas aeruginosa , 2010, Molecular microbiology.

[39]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[40]  Mario Renda,et al.  The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains , 2009, Proceedings of the National Academy of Sciences.

[41]  Oliver F. Lange,et al.  Structure prediction for CASP8 with all‐atom refinement using Rosetta , 2009, Proteins.

[42]  A. Becker,et al.  Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. , 2008, Molecular plant-microbe interactions : MPMI.

[43]  A. Becker,et al.  Competitive and Cooperative Effects in Quorum-Sensing-Regulated Galactoglucan Biosynthesis in Sinorhizobium meliloti , 2008, Journal of bacteriology.

[44]  A. Becker,et al.  Fine-Tuning of Galactoglucan Biosynthesis in Sinorhizobium meliloti by Differential WggR (ExpG)-, PhoB-, and MucR-Dependent Regulation of Two Promoters , 2008, Journal of bacteriology.

[45]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[46]  L. Russo,et al.  The prokaryotic Cys2His2 zinc-finger adopts a novel fold as revealed by the NMR structure of Agrobacterium tumefaciens Ros DNA-binding domain , 2007, Proceedings of the National Academy of Sciences.

[47]  M. Babu,et al.  High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes , 2007, Nucleic acids research.

[48]  M. Janczarek,et al.  The Rhizobium leguminosarum bv. trifolii RosR: transcriptional regulator involved in exopolysaccharide production. , 2007, Molecular plant-microbe interactions : MPMI.

[49]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[50]  L. Russo,et al.  A novel type of zinc finger DNA binding domain in the Agrobacterium tumefaciens transcriptional regulator Ros. , 2006, Biochemistry.

[51]  R. Keller,et al.  The Computer Aided Resonance Assignment Tutorial , 2004 .

[52]  J. Mackay,et al.  CCHX Zinc Finger Derivatives Retain the Ability to Bind Zn(II) and Mediate Protein-DNA Interactions* , 2003, Journal of Biological Chemistry.

[53]  C. Higgins,et al.  H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. , 2002, Journal of molecular biology.

[54]  J. Lloret,et al.  MucR is necessary for galactoglucan production in Sinorhizobium meliloti EFB1. , 2000, Molecular plant-microbe interactions : MPMI.

[55]  A. Pühler,et al.  Biosynthesis of the exopolysaccharide galactoglucan in Sinorhizobium meliloti is subject to a complex control by the phosphate-dependent regulator PhoB and the proteins ExpG and MucR. , 1999, Microbiology.

[56]  G. Morris,et al.  Pulse sequences for high‐resolution diffusion‐ordered spectroscopy (HR‐DOSY) , 1998 .

[57]  X. Daura,et al.  Reversible peptide folding in solution by molecular dynamics simulation. , 1998, Journal of molecular biology.

[58]  R. Bazzo,et al.  The Metal Binding Site of the Hepatitis C Virus NS3 Protease , 1998, The Journal of Biological Chemistry.

[59]  C. Kado,et al.  Agrobacterium transcriptional regulator Ros is a prokaryotic zinc finger protein that regulates the plant oncogene ipt. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  A. Pühler,et al.  The Sinorhizobium meliloti MucR protein, which is essential for the production of high-molecular-weight succinoglycan exopolysaccharide, binds to short DNA regions upstream of exoH and exoY , 1998, Molecular and General Genetics MGG.

[61]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[62]  C Kooperberg,et al.  Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. , 1997, Journal of molecular biology.

[63]  D. S. Garrett,et al.  Identification by NMR of the binding surface for the histidine-containing phosphocarrier protein HPr on the N-terminal domain of enzyme I of the Escherichia coli phosphotransferase system. , 1997, Biochemistry.

[64]  J. Handelsman,et al.  rosR, a determinant of nodulation competitiveness in Rhizobium etli. , 1997, Molecular plant-microbe interactions : MPMI.

[65]  A. Pühler,et al.  The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products , 1997, Journal of bacteriology.

[66]  K. Niehaus,et al.  Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. , 1995, Molecular plant-microbe interactions : MPMI.

[67]  T. Mizuno,et al.  Solution structure of the DNA binding domain of a nucleoid‐associated protein, H‐NS, from Escherichia coli , 1995, FEBS letters.

[68]  L. Kay,et al.  Enhanced-Sensitivity Triple-Resonance Spectroscopy with Minimal H2O Saturation , 1994 .

[69]  L. Kay,et al.  Gradient-Enhanced Triple-Resonance Three-Dimensional NMR Experiments with Improved Sensitivity , 1994 .

[70]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[71]  F. Richards,et al.  The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. , 1992, Biochemistry.

[72]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[73]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .