Generalized grain cluster method for multiscale response of multiphase materials

A multiscale approach termed the generalized grain cluster method (GGCM) is presented, which can be applied for the prediction of the macroscopic behavior of an aggregate of single crystal grains composing a multiphase material. The GGCM is based on the minimization of a functional that depends on the microscopic deformation gradients in the grains through the equilibrium requirements of the grains as well as kinematic compatibility between grains. By means of the specification of weighting factors it is possible to mimic responses falling between the Taylor and Sachs bounds. The numerical solution is computed with an incremental-iterative algorithm based on a constrained gradient descent method. For a multiscale analysis, the GCCM can be included at integration points of a standard finite element code to simulate macroscopic problems. A comparison with FEM direct numerical simulations illustrates that the computational time of the GGCM may be up to about an order of magnitude lower.

[1]  Morton E. Gurtin,et al.  A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations , 2002 .

[2]  K. Hackl,et al.  Microstructural evolution during multiaxial deformation of pseudoelastic NiTi studied by first-principles-based micromechanical modeling , 2009 .

[3]  D. Matlock,et al.  Forming response of retained austenite in a C‐Si‐Mn high strength TRIP sheet steel , 2002 .

[4]  Asj Akke Suiker,et al.  Modelling of the effects of grain orientation on transformation-induced plasticity in multiphase carbon steels , 2006 .

[5]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[7]  L. P. Eversa,et al.  Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation , 2002 .

[8]  G. Sachs,et al.  Zur Ableitung einer Fließbedingung , 1929 .

[9]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[10]  Paul Van Houtte,et al.  Deformation texture prediction: from the Taylor model to the advanced Lamel model , 2005 .

[11]  P. Houtte,et al.  Application of the Lamel model for simulating cold rolling texture in molybdenum sheet , 2002 .

[12]  K. Shizawa,et al.  Phase-field simulation of static recrystallization considering nucleation from subgrains and nucleus growth with incubation period , 2014 .

[13]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[14]  Mario Castro,et al.  Phase-field approach to heterogeneous nucleation , 2003 .

[15]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[16]  J. R. Willis,et al.  Upper and lower bounds for non-linear composite behaviour , 1994 .

[17]  Wolfgang H. Müller,et al.  A study of the coarsening in tin/lead solders , 2000 .

[18]  S. Turteltaub,et al.  Crystalline damage growth during martensitic phase transformations , 2007 .

[19]  F. Delannay,et al.  On the sources of work hardening in multiphase steels assisted by transformation-induced plasticity , 2001 .

[20]  K. Sugimoto,et al.  Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel , 1992, Metallurgical and Materials Transactions A.

[21]  고성현,et al.  Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석 , 2004 .

[22]  Dierk Raabe,et al.  The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals , 2009 .

[23]  S. Turteltaub,et al.  Crystallographically based model for transformation-induced plasticity in multiphase carbon steels , 2008 .

[24]  S. Turteltaub,et al.  Coupled thermomechanical analysis of transformation-induced plasticity in multiphase steels , 2012 .

[25]  K. Bhattacharya,et al.  Interplay of martensitic phase transformation and plastic slip in polycrystals , 2013 .

[26]  S. Turteltaub,et al.  A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations , 2006 .

[27]  L. Brinson,et al.  Shape memory alloys, Part I: General properties and modeling of single crystals , 2006 .

[28]  Sergio Turteltaub,et al.  Computational modelling of plasticity induced by martensitic phase transformations , 2005 .

[29]  D. Parks,et al.  Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation , 2002 .

[30]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[31]  C. Fressengeas,et al.  A field theory of distortion incompatibility for coupled fracture and plasticity , 2014 .

[32]  Renaud Masson,et al.  Micromechanics-based modeling of plastic polycrystals: an affine formulation , 2000 .

[33]  Franz Roters,et al.  A novel grain cluster-based homogenization scheme , 2009 .

[34]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[35]  J. Nye Some geometrical relations in dislocated crystals , 1953 .

[36]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[37]  S. Turteltaub,et al.  Analysis of banded microstructures in multiphase steels assisted by transformation-induced plasticity , 2014 .

[38]  Jian Wang,et al.  A constitutive model of twinning and detwinning for hexagonal close packed polycrystals , 2012 .

[39]  F. Roters,et al.  Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes , 2009 .

[40]  Pierre Suquet,et al.  Overall potentials and extremal surfaces of power law or ideally plastic composites , 1993 .

[41]  S. Nemat-Nasser,et al.  Rate-dependent, finite elasto-plastic deformation of polycrystals , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[42]  Asj Akke Suiker,et al.  Transformation-induced plasticity in ferrous alloys , 2005 .

[43]  Rodney Hill,et al.  Continuum micro-mechanics of elastoplastic polycrystals , 1965 .

[44]  David L. McDowell,et al.  Homogenized finite elastoplasticity and damage: theory and computations , 2004 .