Fast strong approximation Monte Carlo schemes for stochastic volatility models

Numerical integration methods for stochastic volatility models in financial markets are discussed. We concentrate on two classes of stochastic volatility models where the volatility is either directly given by a mean-reverting CEV process or as a transformed Ornstein–Uhlenbeck process. For the latter, we introduce a new model based on a simple hyperbolic transformation. Various numerical methods for integrating mean-reverting CEV processes are analysed and compared with respect to positivity preservation and efficiency. Moreover, we develop a simple and robust integration scheme for the two-dimensional system using the strong convergence behaviour as an indicator for the approximation quality. This method, which we refer to as the IJK (137) scheme, is applicable to all types of stochastic volatility models and can be employed as a drop-in replacement for the standard log-Euler procedure.

[1]  Christian Kahl,et al.  Balanced Milstein Methods for Ordinary SDEs , 2006, Monte Carlo Methods Appl..

[2]  Mark Broadie,et al.  Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..

[3]  Leif Andersen,et al.  Moment Explosions in Stochastic Volatility Models Moment Explosions in the Black–scholes and Exponential Lévy Model Moment Explosions in the Heston Model , 2022 .

[4]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[5]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[6]  Leif Andersen,et al.  Extended Libor Market Models with Stochastic Volatility , 2001 .

[7]  Leif Andersen,et al.  Volatility skews and extensions of the Libor market model , 1998 .

[8]  E. Platen,et al.  Balanced Implicit Methods for Stiff Stochastic Systems , 1998 .

[9]  Klaus Sandmann,et al.  A Note on the Stability of Lognormal Interest Rate Models and the Pricing of Eurodollar Futures , 1997 .

[10]  Klaus Sandmann,et al.  Log-Normal Interest Rate Models: Stability and Methodology , 1997 .

[11]  Nigel J. Newton Variance Reduction for Simulated Diffusions , 1994, SIAM J. Appl. Math..

[12]  Jessica G. Gaines,et al.  Random Generation of Stochastic Area Integrals , 1994, SIAM J. Appl. Math..

[13]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[14]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[15]  Campbell R. Harvey,et al.  An Empirical Comparison of Alternative Models of the Short-Term Interest Rate , 1992 .

[16]  E. Stein,et al.  Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .

[17]  Nigel J. Newton Asymptotically efficient Runge-Kutta methods for a class of ITOˆ and Stratonovich equations , 1991 .

[18]  Louis O. Scott Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.

[19]  James B. Wiggins Option values under stochastic volatility: Theory and empirical estimates , 1987 .

[20]  Eduardo S. Schwartz,et al.  Analyzing Convertible Bonds , 1980, Journal of Financial and Quantitative Analysis.

[21]  S. Beckers The Constant Elasticity of Variance Model and Its Implications For Option Pricing , 1980 .

[22]  George Marsaglia,et al.  Improvements on Fast Methods for Generating Normal Random Variables , 1976, Inf. Process. Lett..

[23]  G. N. Mil’shtejn Approximate Integration of Stochastic Differential Equations , 1975 .

[24]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[25]  E. Wong,et al.  On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .

[26]  J. Meigs,et al.  WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.

[27]  J. Doob,et al.  The Brownian Movement and Stochastic Equations , 1942 .

[28]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[29]  Adelaide V. Finch,et al.  September , 1867, The Hospital.

[30]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[31]  Christian Kahl,et al.  Not-so-complex logarithms in the Heston model , 2006 .

[32]  A. Karimi,et al.  Master‟s thesis , 2011 .

[33]  M. Günther,et al.  Positive numerical integration of Stochastic Differential Equations , 2004 .

[34]  Eric Fournié,et al.  Monte Carlo Methods in Finance , 2002 .

[35]  Peter Jaeckel,et al.  Monte Carlo methods in finance , 2002 .

[36]  Michael Hogan,et al.  The Lognormal Interest Rate Model and Eurodollar Futures , 1998 .

[37]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[38]  Henri Schurz,et al.  Numerical Regularization for SDEs: Construction of Nonnegative Solutions , 1995 .

[39]  D. Talay,et al.  Discretization and simulation of stochastic differential equations , 1985 .

[40]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[41]  Hani J. Doss,et al.  Liens entre equations di erentielles stochastiques et ordinaires , 1977 .

[42]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[43]  R. Mazo On the theory of brownian motion , 1973 .

[44]  George Marsaglia,et al.  A fast procedure for generating normal random variables , 1964, CACM.

[45]  P. Mazur On the theory of brownian motion , 1959 .

[46]  G. Maruyama Continuous Markov processes and stochastic equations , 1955 .

[47]  P. Levy Wiener's Random Function, and Other Laplacian Random Functions , 1951 .

[48]  Edwin Armstrong,et al.  COLUMBIA UNIVERSITY. , 1901, Science.