Fast strong approximation Monte Carlo schemes for stochastic volatility models
暂无分享,去创建一个
[1] Christian Kahl,et al. Balanced Milstein Methods for Ordinary SDEs , 2006, Monte Carlo Methods Appl..
[2] Mark Broadie,et al. Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes , 2006, Oper. Res..
[3] Leif Andersen,et al. Moment Explosions in Stochastic Volatility Models Moment Explosions in the Black–scholes and Exponential Lévy Model Moment Explosions in the Heston Model , 2022 .
[4] T. Alderweireld,et al. A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.
[5] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[6] Leif Andersen,et al. Extended Libor Market Models with Stochastic Volatility , 2001 .
[7] Leif Andersen,et al. Volatility skews and extensions of the Libor market model , 1998 .
[8] E. Platen,et al. Balanced Implicit Methods for Stiff Stochastic Systems , 1998 .
[9] Klaus Sandmann,et al. A Note on the Stability of Lognormal Interest Rate Models and the Pricing of Eurodollar Futures , 1997 .
[10] Klaus Sandmann,et al. Log-Normal Interest Rate Models: Stability and Methodology , 1997 .
[11] Nigel J. Newton. Variance Reduction for Simulated Diffusions , 1994, SIAM J. Appl. Math..
[12] Jessica G. Gaines,et al. Random Generation of Stochastic Area Integrals , 1994, SIAM J. Appl. Math..
[13] M. Yor,et al. BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .
[14] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[15] Campbell R. Harvey,et al. An Empirical Comparison of Alternative Models of the Short-Term Interest Rate , 1992 .
[16] E. Stein,et al. Stock Price Distributions with Stochastic Volatility: An Analytic Approach , 1991 .
[17] Nigel J. Newton. Asymptotically efficient Runge-Kutta methods for a class of ITOˆ and Stratonovich equations , 1991 .
[18] Louis O. Scott. Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application , 1987, Journal of Financial and Quantitative Analysis.
[19] James B. Wiggins. Option values under stochastic volatility: Theory and empirical estimates , 1987 .
[20] Eduardo S. Schwartz,et al. Analyzing Convertible Bonds , 1980, Journal of Financial and Quantitative Analysis.
[21] S. Beckers. The Constant Elasticity of Variance Model and Its Implications For Option Pricing , 1980 .
[22] George Marsaglia,et al. Improvements on Fast Methods for Generating Normal Random Variables , 1976, Inf. Process. Lett..
[23] G. N. Mil’shtejn. Approximate Integration of Stochastic Differential Equations , 1975 .
[24] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[25] E. Wong,et al. On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .
[26] J. Meigs,et al. WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.
[27] J. Doob,et al. The Brownian Movement and Stochastic Equations , 1942 .
[28] G. Uhlenbeck,et al. On the Theory of the Brownian Motion , 1930 .
[29] Adelaide V. Finch,et al. September , 1867, The Hospital.
[30] Xiongzhi Chen. Brownian Motion and Stochastic Calculus , 2008 .
[31] Christian Kahl,et al. Not-so-complex logarithms in the Heston model , 2006 .
[32] A. Karimi,et al. Master‟s thesis , 2011 .
[33] M. Günther,et al. Positive numerical integration of Stochastic Differential Equations , 2004 .
[34] Eric Fournié,et al. Monte Carlo Methods in Finance , 2002 .
[35] Peter Jaeckel,et al. Monte Carlo methods in finance , 2002 .
[36] Michael Hogan,et al. The Lognormal Interest Rate Model and Eurodollar Futures , 1998 .
[37] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[38] Henri Schurz,et al. Numerical Regularization for SDEs: Construction of Nonnegative Solutions , 1995 .
[39] D. Talay,et al. Discretization and simulation of stochastic differential equations , 1985 .
[40] S. Karlin,et al. A second course in stochastic processes , 1981 .
[41] Hani J. Doss,et al. Liens entre equations di erentielles stochastiques et ordinaires , 1977 .
[42] S. Ross,et al. The valuation of options for alternative stochastic processes , 1976 .
[43] R. Mazo. On the theory of brownian motion , 1973 .
[44] George Marsaglia,et al. A fast procedure for generating normal random variables , 1964, CACM.
[45] P. Mazur. On the theory of brownian motion , 1959 .
[46] G. Maruyama. Continuous Markov processes and stochastic equations , 1955 .
[47] P. Levy. Wiener's Random Function, and Other Laplacian Random Functions , 1951 .
[48] Edwin Armstrong,et al. COLUMBIA UNIVERSITY. , 1901, Science.