Higher-Order Inference for Multi-class Log-Supermodular Models

Higher-order models have been shown to be very useful for a plethora of computer vision tasks. However, existing techniques have focused mainly on MAP inference. In this paper, we present the first efficient approach towards approximate Bayesian marginal inference in a general class of high-order, multi-label attractive models, where previous techniques slow down exponentially with the order (clique size). We formalize this task as performing inference in log-supermodular models under partition constraints, and present an efficient variational inference technique. The resulting optimization problems are convex and yield bounds on the partition function. We also obtain a fully factorized approximation to the posterior, which can be used in lieu of the true complicated distribution. We empirically demonstrate the performance of our approach by comparing it to traditional inference methods on a challenging high-fidelity multi-label image segmentation dataset. We obtain state-of-the-art classification accuracy for MAP inference, and substantially improved ROC curves using the approximate marginals.

[1]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[3]  Francis R. Bach,et al.  Structured sparsity-inducing norms through submodular functions , 2010, NIPS.

[4]  Rishabh Iyer Submodular Point Processes , 2014 .

[5]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[6]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[8]  Joris M. Mooij,et al.  libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models , 2010, J. Mach. Learn. Res..

[9]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.

[10]  Vibhav Vineet,et al.  Filter-Based Mean-Field Inference for Random Fields with Higher-Order Terms and Product Label-Spaces , 2012, International Journal of Computer Vision.

[11]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[12]  James G. Oxley,et al.  Matroid theory , 1992 .

[13]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[14]  S. Süsstrunk,et al.  SLIC Superpixels ? , 2010 .

[15]  Deqing Sun,et al.  Local Layering for Joint Motion Estimation and Occlusion Detection , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[17]  Leslie Ann Goldberg,et al.  The Complexity of Ferromagnetic Ising with Local Fields , 2006, Combinatorics, Probability and Computing.

[18]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[19]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[20]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[21]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Martin Jaggi,et al.  Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.

[23]  Richard S. Zemel,et al.  HOP-MAP: Efficient Message Passing with High Order Potentials , 2010, AISTATS.

[24]  Jian Zhang,et al.  Message Passing Inference for Large Scale Graphical Models with High Order Potentials , 2014, NIPS.

[25]  A. Banerjee Convex Analysis and Optimization , 2006 .

[26]  Chandra Chekuri,et al.  Submodular Cost Allocation Problem and Applications , 2011, ICALP.

[27]  Joachim Weickert,et al.  Joint Estimation of Motion, Structure and Geometry from Stereo Sequences , 2010, ECCV.

[28]  Daniel P. Huttenlocher,et al.  Efficient Belief Propagation for Early Vision , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[29]  Andreas Krause,et al.  From MAP to Marginals: Variational Inference in Bayesian Submodular Models , 2014, NIPS.

[30]  Brendan J. Frey,et al.  Fast Exact Inference for Recursive Cardinality Models , 2012, UAI.

[31]  Andreas Krause,et al.  Near-optimal Nonmyopic Value of Information in Graphical Models , 2005, UAI.

[32]  J. Borwein,et al.  Convex Functions: Constructions, Characterizations and Counterexamples , 2010 .

[33]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[34]  Andrew W. Fitzgibbon,et al.  Global stereo reconstruction under second order smoothness priors , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Andreas Krause,et al.  Efficient Minimization of Decomposable Submodular Functions , 2010, NIPS.

[36]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[37]  Chen Wang,et al.  A Primal-Dual Algorithm for Higher-Order Multilabel Markov Random Fields , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Suvrit Sra,et al.  Reflection methods for user-friendly submodular optimization , 2013, NIPS.

[39]  Rishabh K. Iyer,et al.  Submodular Point Processes with Applications to Machine learning , 2015, AISTATS.

[40]  R. Rockafellar Extension of Fenchel’ duality theorem for convex functions , 1966 .

[41]  Jeff A. Bilmes,et al.  Q-Clustering , 2005, NIPS.

[42]  Tamir Hazan,et al.  Convergent Message-Passing Algorithms for Inference over General Graphs with Convex Free Energies , 2008, UAI.

[43]  Jeff A. Bilmes,et al.  Submodularity beyond submodular energies: Coupling edges in graph cuts , 2011, CVPR 2011.

[44]  Tamir Hazan,et al.  Norm-Product Belief Propagation: Primal-Dual Message-Passing for Approximate Inference , 2009, IEEE Transactions on Information Theory.

[45]  Francis R. Bach,et al.  Convex Analysis and Optimization with Submodular Functions: a Tutorial , 2010, ArXiv.

[46]  Tommi S. Jaakkola,et al.  Convergence Rate Analysis of MAP Coordinate Minimization Algorithms , 2012, NIPS.

[47]  Andreas Krause,et al.  Scalable Variational Inference in Log-supermodular Models , 2015, ICML.

[48]  Francis R. Bach,et al.  Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..

[49]  Jian Zhang,et al.  Estimating the 3D Layout of Indoor Scenes and Its Clutter from Depth Sensors , 2013, 2013 IEEE International Conference on Computer Vision.

[50]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .