Score test for homogeneity of dispersion in generalized Poisson mixed models with excess zeros

ABSTRACT In many applications, the clustered count data often contain excess zeros and the zero-inflated generalized Poisson mixed (ZIGPM) regression model may be suitable. However, dispersion in ZIGPM is often treated as fixed unknown parameter, and this assumption may be not appropriate in some situations. In this article, a score test for homogeneity of dispersion parameter in ZIGPM regression model is developed and corresponding test statistic is obtained. Sampling distribution and power of the score test statistic are investigated through Monte Carlo simulation. Finally, results from a biological example illustrate the usefulness of the diagnostic statistic.

[1]  M. V. van Iersel,et al.  Imidacloprid Applications by Subirrigation for Control of Silverleaf Whitefly (Homoptera: Aleyrodidae) on Poinsettia , 2000, Journal of economic entomology.

[2]  B. Wei,et al.  Homogeneity diagnostics for skew-normal nonlinear regression models , 2009 .

[3]  Dankmar Böhning,et al.  The zero‐inflated Poisson model and the decayed, missing and filled teeth index in dental epidemiology , 1999 .

[4]  S. Weisberg,et al.  Diagnostics for heteroscedasticity in regression , 1983 .

[5]  K. Yau,et al.  Zero‐Inflated Negative Binomial Mixed Regression Modeling of Over‐Dispersed Count Data with Extra Zeros , 2003 .

[6]  Feng-Chang Xie,et al.  Diagnostics for a class of survival regression models with heavy-tailed errors , 2012, Comput. Stat. Data Anal..

[7]  Liming Xiang,et al.  A Score Test for Overdispersion in Zero-inflated Poisson Mixed Regression Model , 2022 .

[8]  M. Kendall Theoretical Statistics , 1956, Nature.

[9]  Ram C. Tripathi,et al.  Score Test for Zero Inflated Generalized Poisson Regression Model , 2005 .

[10]  D. Hall Zero‐Inflated Poisson and Binomial Regression with Random Effects: A Case Study , 2000, Biometrics.

[11]  J. L. Folks,et al.  POWER FUNCTION FOR INVERSE GAUSSIAN REGRESSION MODELS , 2001 .

[12]  Artur J. Lemonte A new extended Birnbaum-Saunders regression model for lifetime modeling , 2013, Comput. Stat. Data Anal..

[13]  Feng-Chang Xie,et al.  Testing for varying zero-inflation and dispersion in generalized Poisson regression models , 2010 .

[14]  Felix Famoye,et al.  Zero-Inflated Generalized Poisson Regression Model with an Application to Domestic Violence Data , 2021, Journal of Data Science.

[15]  C. Mcgilchrist Estimation in Generalized Mixed Models , 1994 .

[16]  J. Hinde,et al.  A Score Test for Testing a Zero‐Inflated Poisson Regression Model Against Zero‐Inflated Negative Binomial Alternatives , 2001, Biometrics.

[17]  Feng-Chang Xie,et al.  Score tests for zero-inflated generalized Poisson mixed regression models , 2009, Comput. Stat. Data Anal..

[18]  Lixing Zhu,et al.  Heteroscedasticity diagnostics for t linear regression models , 2009 .

[19]  Gordon K. Smyth,et al.  Generalized linear models with varying dispersion , 1989 .

[20]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[21]  Jeffrey S. Simonoff,et al.  Use of Modified Profile Likelihood for Improved Tests of Constancy of Variance in Regression , 1994 .

[22]  Feng-Chang Xie,et al.  Assessing influence for pharmaceutical data in zero‐inflated generalized Poisson mixed models , 2008, Statistics in medicine.

[23]  X L Meng,et al.  The EM algorithm and medical studies: a historical linik , 1997, Statistical methods in medical research.