Optimal Guidance using Density-Proportional Flightpath Angle Profile for Precision Landing on Mars

This paper addresses the most significant sources of landing dispersion for an autonomously guided vehicle during its atmospheric entry on Mars. Trajectory guidance strategies are to be developed in order to achieve desired terminal altitude, velocity and downrange. Recent advances in the literature showed an analytical predictor-corrector guidance solution using one or two constant flightpath angle segments. However, these algorithms demonstrate some robustness limitations from the inherent vehicle aerodynamic controllability. Therefore, a novel guidance scheme using a density-proportional flightpath angle trajectory profile is proposed in order to improve the guidance performance. Finally, the performance of the algorithm is demonstrated on atmospheric entry simulations.

[1]  Richard W. Powell,et al.  Systems for pinpoint landing at Mars , 2004 .

[2]  James P. Masciarelli,et al.  AEROCAPTURE GUIDANCE ALGORITHM COMPARISON CAMPAIGN , 2002 .

[3]  R. Braun,et al.  Mars Pathfinder atmospheric entry - Trajectory design and dispersion analysis , 1996 .

[4]  Jean de Lafontaine,et al.  Robust Guidance and Control Algorithms using Constant Flight Path Angle for Precision Landing on Mars , 2006 .

[5]  L. Bryant,et al.  Analytic drag control for precision landing and aerocapture , 1998 .

[6]  Yu. N. Kaluzhskikh,et al.  A Control Algorithm for Reentry of a Rescue Space Vehicle into the Earth's Atmosphere , 2000 .

[7]  Wei-Min Lu,et al.  Guidance and Control for Mars Atmospheric Entry: Adaptivity and Robustness , 1997 .

[8]  Etienne Perot,et al.  An analytic aerocapture guidance algorithm for the Mars Sample Return Orbiter , 2000 .

[9]  Kuang-Yang Tu,et al.  Drag-Based Predictive Tracking Guidance for Mars Precision Landing , 1998 .

[10]  Alberto Cavallo,et al.  ATTITUDE CONTROL FOR LOW LIFT/DRAG RE-ENTRY VEHICLES , 1996 .

[11]  Kenneth D. Mease,et al.  Reduced-Order Entry Trajectory Planning for Acceleration Guidance , 2002 .

[12]  Kenneth D. Mease,et al.  A THREE-DIMENSIONAL PREDICTIVE ENTRY GUIDANCE APPROACH , 2000 .

[13]  Ping Lu,et al.  Entry Guidance for the X-33 Vehicle , 1998 .

[14]  A. Roenneke,et al.  Re-entry control to a drag-vs-energy profile , 1994 .

[15]  Kenneth D. Mease,et al.  Re-entry trajectory planning for a reusable launch vehicle , 1999 .

[16]  F. W. Kellaway,et al.  Advanced Engineering Mathematics , 1969, The Mathematical Gazette.

[17]  S. Bharadwaj,et al.  ENTRY TRAJECTORY TRACKING LAW VIA FEEDBACK LINEARIZATION , 1998 .

[18]  David B. Doman,et al.  On-Line Trajectory Generation for Hypersonic Vehicles , 2005 .

[19]  Axel J. Roenneke,et al.  Trajectory control for a low-lift re-entry vehicle , 1993 .

[20]  Jean de Lafontaine,et al.  Autonomous Planetary Landing using a LIDAR Sensor: The Navigation Function , 2003 .

[21]  Kenneth D. Mease,et al.  Shuttle entry guidance revisited using nonlinear geometric methods , 1994 .

[22]  Prasun N. Desai,et al.  Mars exploration rovers entry, descent, and landing trajectory analysis , 2004 .

[23]  Ping Lu Entry Guidance and Trajectory Control for Reusable Launch Vehicle , 1997 .