Effect of W/C ratio on covering depth of fly ash concrete in marine environment

Abstract This investigation studied the effect of W/C ratio on covering depth required against the corrosion of embedded steel of fly ash concrete in marine environment up to 4-year exposure. Fly ash was used to partially replace Portland cement type I at 0%, 15%, 25%, 35%, and 50% by weight of cementitious material. Water to cementitious material ratios (W/C) of fly ash concretes were varied at 0.45, 0.55, and 0.65. The 200-mm concrete cube specimens were cast and steel bars with 12-mm diameter and 50 mm in length were inserted in the concrete with the covering depth of 10, 20, 50, and 75 mm. The specimens were cured in water for 28 days, and then placed to the tidal zone of marine environment in the Gulf of Thailand. Subsequently, the concrete specimens were tested for the compressive strength, chloride penetration profile and corrosion of embedded steel bar after being exposed to tidal zone for 2, 3, and 4 years. The results showed that the concrete mixed with Portland cement type I exhibited higher rate of the chloride penetration than the fly ash concrete. The chloride penetration of fly ash concrete was comparatively low and decreased with the increasing of fly ash content. The increase of fly ash replacement and the decrease of W/C ratio could reduce the covering depth required for the initial corrosion of the steel bar. Interestingly, fly ash concretes with 35% and 50% cement replacement and having W/C ratio of 0.65 provided better corrosion resistance at 4-year exposure than the control concrete with W/C ratio of 0.45. In addition, the covering depth of concrete with compressive strength of 30 MPa (W/C ratio of 0.65) could be reduced from 50 to 30 mm by the addition of fly ash up to 50%.