Boosting adaptive linear weak classifiers for online learning and tracking
暂无分享,去创建一个
[1] Nick Littlestone,et al. Redundant noisy attributes, attribute errors, and linear-threshold learning using winnow , 1991, COLT '91.
[2] Yoav Freund,et al. A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.
[3] G C Dean,et al. An Introduction to Kalman Filters , 1986 .
[4] Shai Avidan,et al. Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] Dorin Comaniciu,et al. Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).
[6] Ian H. Witten,et al. Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .
[7] Dorin Comaniciu,et al. Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[8] Frank Dellaert,et al. Robust car tracking using Kalman filtering and Bayesian templates , 1998, Other Conferences.
[9] Stuart J. Russell,et al. Online bagging and boosting , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.
[10] J. L. Roux. An Introduction to the Kalman Filter , 2003 .
[11] Michael Isard,et al. CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.
[12] Horst Bischof,et al. On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[13] Avrim Blum,et al. On-line Algorithms in Machine Learning , 1996, Online Algorithms.
[14] Manfred K. Warmuth,et al. The Weighted Majority Algorithm , 1994, Inf. Comput..