A Monge-Ampère enhancement for semi-Lagrangian methods

Demanding the compatibility of semi-Lagrangian trajectory schemes with the fundamental Euler expansion formula leads to the Monge-Ampere (MA) nonlinear second-order partial differential equation. Given standard estimates of the departure points of flow trajectories, solving the associated MA problem provides a corrected solution satisfying a discrete Lagrangian form of the mass continuity equation to round-off error. The impact of the MA enhancement is discussed in two diverse limits of fluid dynamics applications: passive tracer advection in a steady cellular flow and in fully developed turbulence. Improvements of the overall accuracy of simulations depend on the problem and can be substantial.

[1]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[2]  J. Strain Semi-Lagrangian Methods for Level Set Equations , 1999 .

[3]  Andrew Staniforth,et al.  Aspects of the dynamical core of a nonhydrostatic, deep-atmosphere, unified weather and climate-prediction model , 2008, J. Comput. Phys..

[4]  Piotr K. Smolarkiewicz,et al.  A class of monotone interpolation schemes , 1992 .

[5]  George Em Karniadakis,et al.  A semi-Lagrangian high-order method for Navier-Stokes equations , 2001 .

[6]  Gian Luca Delzanno,et al.  An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization , 2008, J. Comput. Phys..

[7]  Uriel Frisch,et al.  The Monge-Ampère equation: Various forms and numerical solution , 2009, J. Comput. Phys..

[8]  Sergei Petrovich Novikov,et al.  The geometry of surfaces, transformation groups, and fields , 1984 .

[9]  A. Staniforth,et al.  Comments on “Swolarkiewicz's Deformational Flow” , 1987 .

[10]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[11]  David Montgomery,et al.  Two-Dimensional Turbulence , 2012 .

[12]  M. Falcone,et al.  Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .

[13]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[14]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[15]  Ian Roulstone,et al.  Generalized semi-geostrophic theory on a sphere , 2005, Journal of Fluid Mechanics.

[16]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[17]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[18]  P. Smolarkiewicz,et al.  A class of semi-Lagrangian approximations for fluids. , 1992 .

[19]  Piotr K. Smolarkiewicz,et al.  Multidimensional positive definite advection transport algorithm: an overview , 2006 .

[20]  John Norbury,et al.  Generalised Lagrangian solutions for atmospheric and oceanic flows , 1991 .

[21]  R. Temam,et al.  Multilevel schemes for the shallow water equations , 2005 .