Objective Bayesian inference with proper scoring rules
暂无分享,去创建一个
F. Giummolè | V. Mameli | E. Ruli | L. Ventura | E. Ruli | L. Ventura | F. Giummolè | V. Mameli
[1] Aapo Hyvärinen,et al. Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..
[2] S. Walker,et al. On a Global Objective Prior from Score Rules , 2017, 1706.00599.
[3] S. Fienberg. When did Bayesian inference become "Bayesian"? , 2006 .
[4] John Law,et al. Robust Statistics—The Approach Based on Influence Functions , 1986 .
[5] J. Ghosh,et al. On Divergence Measures Leading to Jeffreys and Other Reference Priors , 2014 .
[6] L. Ventura,et al. Default prior distributions from quasi- and quasi-profile likelihoods , 2010 .
[7] A. Dawid. The geometry of proper scoring rules , 2007 .
[8] Rahul Mukerjee,et al. Bayesian and frequentist confidence intervals arising from empirical-type likelihoods , 2008 .
[9] Stephen G. Walker,et al. Bayesian information in an experiment and the Fisher information distance , 2016 .
[10] S. Lauritzen,et al. Proper local scoring rules , 2011, 1101.5011.
[11] James O. Berger,et al. Objective Priors for Discrete Parameter Spaces , 2012 .
[12] V. P. Godambe. An Optimum Property of Regular Maximum Likelihood Estimation , 1960 .
[13] N. Lazar. Bayesian empirical likelihood , 2003 .
[14] J. Bernardo. Reference Analysis , 2005 .
[15] Susanne M. Schennach,et al. Accompanying document to "Point Estimation with Exponentially Tilted Empirical Likelihood" , 2005, math/0512181.
[16] V. Mameli,et al. Bootstrap adjustments of signed scoring rule root statistics , 2018, Commun. Stat. Simul. Comput..
[17] Anthony C. Atkinson,et al. A Parametric Framework for the Comparison of Methods of Very Robust Regression , 2014, 1405.5040.
[18] G. Brier. VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .
[19] L. M. M.-T.. Theory of Probability , 1929, Nature.
[20] Susanne M. Schennach,et al. Bayesian exponentially tilted empirical likelihood , 2005 .
[21] A. Dawid,et al. Minimum Scoring Rule Inference , 2014, 1403.3920.
[22] J. Berger. The case for objective Bayesian analysis , 2006 .
[23] Musio Monica,et al. Bayesian Inference for directional data through ABC and homogeneous proper scoring rules , 2017 .
[24] M. C. Jones,et al. Robust and efficient estimation by minimising a density power divergence , 1998 .
[25] Jayanta K. Ghosh,et al. Characterization of priors under which Bayesian and frequentist Barlett corrections are equivalent in the multiparameter case , 1991 .
[26] Laura Ventura,et al. Bayesian composite marginal likelihoods , 2011 .
[27] Monica Musio,et al. Bayesian Model Selection Based on Proper Scoring Rules , 2014, 1409.5291.
[28] Alec Stephenson,et al. An extended Gaussian max-stable process model for spatial extremes , 2009 .
[29] A. Basu,et al. Robust Bayes estimation using the density power divergence , 2016 .
[30] R. Machete. Contrasting probabilistic scoring rules , 2011, 1112.4530.
[31] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[32] A. Dawid,et al. Theory and applications of proper scoring rules , 2014, 1401.0398.
[33] Richard E. Chandler,et al. Inference for clustered data using the independence loglikelihood , 2007 .
[34] James O. Berger,et al. Overall Objective Priors , 2015, 1504.02689.
[35] Stephane Heritier,et al. Robust Methods in Biostatistics , 2009 .
[36] R. Mukerjee,et al. Probability Matching Priors: Higher Order Asymptotics , 2004 .
[37] N. Reid,et al. AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS , 2011 .
[38] Luigi Pace,et al. ADJUSTING COMPOSITE LIKELIHOOD RATIO STATISTICS , 2009 .
[39] Aapo Hyvärinen,et al. Some extensions of score matching , 2007, Comput. Stat. Data Anal..
[40] Laura Ventura,et al. Higher-order asymptotics for scoring rules , 2015 .
[41] Laura Ventura,et al. Robust likelihood functions in Bayesian inference , 2008 .
[42] K. Mardia,et al. Score matching estimators for directional distributions , 2016, 1604.08470.
[43] Erlis Ruli,et al. Approximate Bayesian computation with composite score functions , 2013, Stat. Comput..
[44] Laura Ventura,et al. An overview of robust methods in medical research , 2012, Statistical methods in medical research.
[45] Malay Ghosh,et al. Objective Priors: An Introduction for Frequentists , 2011, 1108.2120.
[46] J. Bernardo,et al. THE FORMAL DEFINITION OF REFERENCE PRIORS , 2009, 0904.0156.
[47] A. Basu,et al. Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression , 2013 .
[48] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[49] J. M. Corcuera,et al. A Characterization of Monotone and Regular Divergences , 1998 .
[50] Lu Lin. Quasi Bayesian likelihood , 2006 .
[51] M. Ghosh,et al. A general divergence criterion for prior selection , 2011 .
[52] Xuming He,et al. Bayesian empirical likelihood for quantile regression , 2012, 1207.5378.
[53] A. Davison,et al. Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes , 2009, 0911.5357.
[54] Steffen L. Lauritzen,et al. The Geometry of Decision Theory , 2006 .
[55] Laura Ventura,et al. Pseudo-Likelihoods for Bayesian Inference , 2016 .
[56] J. Bernardo. Reference Posterior Distributions for Bayesian Inference , 1979 .