Rainbow Connection of Random Regular Graphs

An edge colored graph $G$ is rainbow edge connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph $G$, denoted by $rc(G)$, is the smallest number of colors that are needed in order to make $G$ rainbow connected. In this work we study the rainbow connection of the random $r$-regular graph $G=G(n,r)$ of order $n$, where $r\ge 4$ is a constant. We prove that with probability tending to one as $n$ goes to infinity the rainbow connection of $G$ satisfies $rc(G)=O(\log n)$, which is best possible up to a hidden constant.

[1]  Xueliang Li,et al.  Rainbow Connections of Graphs: A Survey , 2011, Graphs Comb..

[2]  Alan M. Frieze,et al.  Rainbow Connectivity of Sparse Random Graphs , 2012, APPROX-RANDOM.

[3]  Manu Basavaraju,et al.  Rainbow Connection Number and Radius , 2014, Graphs Comb..

[4]  Andrzej Dudek,et al.  Embedding the Erdős-Rényi hypergraph into the random regular hypergraph and Hamiltonicity , 2015, J. Comb. Theory, Ser. B.

[5]  Raphael Yuster,et al.  On Rainbow Connection , 2008, Electron. J. Comb..

[6]  Béla Bollobás,et al.  Random Graphs , 1985 .

[7]  Raphael Yuster,et al.  Hardness and algorithms for rainbow connection , 2008, J. Comb. Optim..

[8]  Jing He,et al.  On rainbow-k-connectivity of random graphs , 2010, Inf. Process. Lett..

[9]  L. Sunil Chandran,et al.  Rainbow connection number and connected dominating sets , 2010, J. Graph Theory.

[10]  J. H. Kima Sandwiching random graphs : universality between random graph models , 2002 .

[11]  N. Wormald,et al.  Models of the , 2010 .

[12]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[13]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[14]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[15]  Raphael Yuster,et al.  The rainbow connection of a graph is (at most) reciprocal to its minimum degree , 2010, J. Graph Theory.

[16]  Benny Sudakov,et al.  Some Remarks on Rainbow Connectivity , 2015, J. Graph Theory.

[17]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[18]  Oliver Riordan,et al.  The Hitting Time of Rainbow Connection Number Two , 2012, Electron. J. Comb..

[19]  Garry L. Johns,et al.  Rainbow connection in graphs , 2008 .