Bounded, efficient and multiply robust estimation of average treatment effects using instrumental variables

Instrumental variables (IVs) are widely used for estimating causal effects in the presence of unmeasured confounding. Under the standard IV model, however, the average treatment effect (ATE) is only partially identifiable. To address this, we propose novel assumptions that allow for identification of the ATE. Our identification assumptions are clearly separated from model assumptions needed for estimation, so that researchers are not required to commit to a specific observed data model in establishing identification. We then construct multiple estimators that are consistent under three different observed data models, and multiply robust estimators that are consistent in the union of these observed data models. We pay special attention to the case of binary outcomes, for which we obtain bounded estimators of the ATE that are guaranteed to lie between -1 and 1. Our approaches are illustrated with simulations and a data analysis evaluating the causal effect of education on earnings.

[1]  Lu Wang,et al.  Estimation with missing data: beyond double robustness , 2013 .

[2]  Elizabeth L. Ogburn,et al.  Doubly robust estimation of the local average treatment effect curve , 2015, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[3]  Miguel A Hernán,et al.  Commentary: how to report instrumental variable analyses (suggestions welcome). , 2013, Epidemiology.

[4]  Giovanni Parmigiani,et al.  Model averaged double robust estimation , 2017, Biometrics.

[5]  N. Sheehan,et al.  Mendelian randomization as an instrumental variable approach to causal inference , 2007, Statistical methods in medical research.

[6]  James M. Robins,et al.  DOUBLY ROBUST INSTRUMENTAL VARIABLE REGRESSION , 2012 .

[7]  Dylan S. Small,et al.  Efficient nonparametric estimation of causal effects in randomized trials with noncompliance , 2009 .

[8]  E. Tchetgen A Commentary on G. Molenberghs’s Review of Missing Data Methods , 2009 .

[9]  Markus Frölich,et al.  Nonparametric IV Estimation of Local Average Treatment Effects with Covariates , 2002, SSRN Electronic Journal.

[10]  G. Imbens,et al.  Better Late than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009) , 2009 .

[11]  Zhiqiang Tan,et al.  Regression and Weighting Methods for Causal Inference Using Instrumental Variables , 2006 .

[12]  A. Goldberger STRUCTURAL EQUATION METHODS IN THE SOCIAL SCIENCES , 1972 .

[13]  Daniel J. Graham,et al.  Multiply robust dose-response estimation for multivalued causal inference problems , 2016 .

[14]  Erratum: On falsification of the binary instrumental variable model , 2017 .

[15]  James J Heckman,et al.  Comparing IV with Structural Models: What Simple IV Can and Cannot Identify , 2009, Journal of econometrics.

[16]  A. Wald The Fitting of Straight Lines if Both Variables are Subject to Error , 1940 .

[17]  Stijn Vansteelandt,et al.  Bias-Reduced Doubly Robust Estimation , 2015 .

[18]  Eric J. Tchetgen Tchetgen,et al.  Alternative Identification and Inference for the Effect of Treatment on the Treated with an Instrumental Variable , 2013 .

[19]  Eric J Tchetgen Tchetgen,et al.  On doubly robust estimation in a semiparametric odds ratio model. , 2010, Biometrika.

[20]  J. Angrist,et al.  Identification and Estimation of Local Average Treatment Effects , 1994 .

[21]  J. Robins Correcting for non-compliance in randomized trials using structural nested mean models , 1994 .

[22]  Frank Windmeijer,et al.  Instrumental Variable Estimators for Binary Outcomes , 2009 .

[23]  Ap Dawid,et al.  Causal inference using influence diagrams: The problem of partial compliance (with Discussion) , 2003 .

[24]  T. Richardson Single World Intervention Graphs ( SWIGs ) : A Unification of the Counterfactual and Graphical Approaches to Causality , 2013 .

[25]  J. Angrist,et al.  Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings , 1999 .

[26]  Ilya Shpitser,et al.  Semiparametric Theory for Causal Mediation Analysis: efficiency bounds, multiple robustness, and sensitivity analysis. , 2012, Annals of statistics.

[27]  Jeffrey M. Woodbridge Econometric Analysis of Cross Section and Panel Data , 2002 .

[28]  S G Baker,et al.  The paired availability design: a proposal for evaluating epidural analgesia during labor. , 1994, Statistics in medicine.

[29]  P. Rosenbaum Identification of Causal Effects Using Instrumental Variables: Comment , 2007 .

[30]  Illtyd Trethowan Causality , 1938 .

[31]  D. Rubin,et al.  Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes , 1999 .

[32]  A. Deaton Instruments of Development: Randomization in the Tropics, and the Search for the Elusive Keys to Economic Development , 2009 .

[33]  E. T. Tchetgen Tchetgen,et al.  Does Mother Know Best? Treatment Adherence as a Function of Anticipated Treatment Benefit , 2015, Epidemiology.

[34]  David Card,et al.  Using Geographic Variation in College Proximity to Estimate the Return to Schooling , 1993 .

[35]  Joshua D. Angrist,et al.  Identification of Causal Effects Using Instrumental Variables , 1993 .

[36]  James M. Robins,et al.  On Modeling and Estimation for the Relative Risk and Risk Difference , 2015, 1510.02430.

[37]  Alberto Abadie Semiparametric instrumental variable estimation of treatment response models , 2003 .

[38]  Andrea Rotnitzky,et al.  Estimation of regression models for the mean of repeated outcomes under nonignorable nonmonotone nonresponse. , 2007, Biometrika.

[39]  D. Rubin Estimating causal effects of treatments in randomized and nonrandomized studies. , 1974 .

[40]  J. Pearl,et al.  Bounds on Treatment Effects from Studies with Imperfect Compliance , 1997 .

[41]  Blai Bonet,et al.  Instrumentality Tests Revisited , 2001, UAI.

[42]  James M. Robins,et al.  ACE Bounds; SEMs with Equilibrium Conditions , 2014, 1410.0470.

[43]  Bohdana Ratitch,et al.  Doubly Robust Estimation , 2014 .

[44]  Andrew Chesher,et al.  Instrumental Variable Models for Discrete Outcomes , 2008 .

[45]  Peter M. Aronow,et al.  Beyond LATE: Estimation of the Average Treatment Effect with an Instrumental Variable , 2013, Political Analysis.

[46]  T. VanderWeele The Sign of the Bias of Unmeasured Confounding , 2008, Biometrics.

[47]  Zhiqiang Tan,et al.  Bounded, efficient and doubly robust estimation with inverse weighting , 2010 .

[48]  Philip G. Wright,et al.  The tariff on animal and vegetable oils , 1928 .

[49]  Judea Pearl,et al.  On the Testability of Causal Models With Latent and Instrumental Variables , 1995, UAI.

[50]  James M. Robins,et al.  Multiply Robust Inference for Statistical Interactions , 2008, Journal of the American Statistical Association.

[51]  J. Robins,et al.  IDENTIFICATION AND INFERENCE FOR MARGINAL AVERAGE TREATMENT EFFECT ON THE TREATED WITH AN INSTRUMENTAL VARIABLE. , 2015, Statistica Sinica.

[52]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[53]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[54]  J. Robins,et al.  Instruments for Causal Inference: An Epidemiologist's Dream? , 2006, Epidemiology.

[55]  D. Rubin The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials , 2007, Statistics in medicine.

[56]  J. Robins,et al.  Comment: Performance of Double-Robust Estimators When “Inverse Probability” Weights Are Highly Variable , 2007, 0804.2965.

[57]  A. Rotnitzky,et al.  Multiple robustness in factorized likelihood models , 2017, Biometrika.

[58]  Zhiqiang Tan,et al.  Marginal and Nested Structural Models Using Instrumental Variables , 2010 .

[59]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[60]  Joshua D. Angrist,et al.  Mostly Harmless Econometrics: An Empiricist's Companion , 2008 .

[61]  James Robins,et al.  The Semiparametric Case‐Only Estimator , 2010, Biometrics.

[62]  J. Pearl The International Journal of Biostatistics Principal Stratification — a Goal or a Tool ? , 2011 .

[63]  J. Robins,et al.  On falsification of the binary instrumental variable model , 2016, Biometrika.

[64]  T. Speed,et al.  On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9 , 1990 .

[65]  D. Rubin,et al.  Principal Stratification in Causal Inference , 2002, Biometrics.

[66]  Stijn Vansteelandt,et al.  Improving the robustness and efficiency of covariate‐adjusted linear instrumental variable estimators , 2015, 1510.01770.

[67]  J. Angrist,et al.  Extrapolate-Ing: External Validity and Overidentification in the Late Framework , 2010 .