Exponential convergence of a linear rational interpolant between transformed Chebyshev points
暂无分享,去创建一个
Jean-Paul Berrut | Richard Baltensperger | Benjamin Noël | Jean-Paul Berrut | R. Baltensperger | Benjamin Noël
[1] H. Schwarz. Numerical Analysis , 1989 .
[2] Herbert E. Salzer,et al. Lagrangian interpolation at the Chebyshev points xn, [ngr][equiv]cos([ngr][pgr]/n), [ngr]=0(1) n; some unnoted advantages , 1972, Comput. J..
[3] Dan Kosloff,et al. A modified Chebyshev pseudospectral method with an O(N –1 ) time step restriction , 1993 .
[4] T. J. Rivlin. The Chebyshev polynomials , 1974 .
[5] C. Schneider,et al. Some new aspects of rational interpolation , 1986 .
[6] Ludger Kaup,et al. Holomorphic Functions of Several Variables: An Introduction to the Fundamental Theory , 1983 .
[7] Peter Henrici,et al. Essentials of numerical analysis, with pocket calculator demonstrations , 1982 .
[8] H. Mittelmann,et al. Lebesgue constant minimizing linear rational interpolation of continuous functions over the interval , 1997 .
[9] Jean-Paul Berrut,et al. Barycentric formulae for cardinal (SINC-)interpolants , 1989 .
[10] Jean-Paul Berrut,et al. The errors in calculating the pseudospectral differentiation matrices for C̆ebys̆ev-Gauss-Lobatto points , 1999 .
[11] Jean-Paul Berrut,et al. Rational functions for guaranteed and experimentally well-conditioned global interpolation , 1988 .
[12] Ludger Kaup,et al. Holomorphic Functions of Several Variables , 1983 .