Stability analysis of the ant system dynamics with non-uniform pheromone deposition rules

The paper extends the classical Ant Systems by considering non-uniform deposition by the ants, while constructing pheromone trails. A deterministic solution to the ant system dynamics for both uniform and non-uniform pheromone deposition rules has been obtained to determine the parameters of the dynamics that ensure stability in pheromone trails. Computer simulation confirmed the results of stability analysis. Performance of the extended ant system (with nonuniform pheromone deposition rule) is compared with the classical ant system using the well known Traveling Salesperson Problem. Simulation results reveal that the extended ant system outperforms the classical ant system by a large margin with respect to convergence speed without sacrificing the quality of solution.

[1]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[2]  M. Dorigo,et al.  1 Positive Feedback as a Search Strategy , 1991 .

[3]  Martin Middendorf,et al.  Modeling the Dynamics of Ant Colony Optimization , 2002, Evolutionary Computation.

[4]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[5]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[6]  Corso Elvezia,et al.  Ant colonies for the traveling salesman problem , 1997 .

[7]  Marco Dorigo,et al.  Search bias in ant colony optimization: on the role of competition-balanced systems , 2005, IEEE Transactions on Evolutionary Computation.

[8]  Thomas Stützle,et al.  A short convergence proof for a class of ant colony optimization algorithms , 2002, IEEE Trans. Evol. Comput..

[9]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[10]  Thomas Stützle,et al.  A SHORT CONVERGENCE PROOF FOR A CLASS OF ACO ALGORITHMS , 2002 .

[11]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[12]  W. Gutjahr On the Finite-Time Dynamics of Ant Colony Optimization , 2006 .

[13]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[14]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[15]  Luca Maria Gambardella,et al.  Solving symmetric and asymmetric TSPs by ant colonies , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[16]  Walter J. Gutjahr,et al.  A Graph-based Ant System and its convergence , 2000, Future Gener. Comput. Syst..

[17]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[18]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[19]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[20]  John Bird,et al.  Higher engineering mathematics , 1993 .

[21]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.