Computing the Structured Pseudospectrum of a Toeplitz Matrix and Its Extreme Points
暂无分享,去创建一个
[1] L. Trefethen,et al. Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .
[2] M. Overton,et al. FAST APPROXIMATION OF THE H∞ NORM VIA OPTIMIZATION OVER SPECTRAL VALUE SETS∗ , 2012 .
[3] Nicholas J. Higham,et al. Backward Error and Condition of Structured Linear Systems , 1992, SIAM J. Matrix Anal. Appl..
[4] Michael L. Overton,et al. Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..
[5] Michael Karow,et al. Structured Pseudospectra and the Condition of a Nonderogatory Eigenvalue , 2010, SIAM J. Matrix Anal. Appl..
[6] S. Graillat. A note on structured pseudospectra , 2006 .
[7] Daniel Kressner,et al. On the computation of structured singular values and pseudospectra , 2010, Syst. Control. Lett..
[8] S. Rump. EIGENVALUES, PSEUDOSPECTRUM AND STRUCTURED PERTURBATIONS , 2006 .
[9] C. D. Meyer,et al. Derivatives and perturbations of eigenvectors , 1988 .
[10] Daniel Kressner,et al. Structured Eigenvalue Condition Numbers , 2006, SIAM J. Matrix Anal. Appl..
[11] A. Böttcher,et al. On the Distance of a Large Toeplitz Band Matrix to the Nearest Singular Matrix , 2002 .
[12] Silvia Noschese,et al. Eigenvalue patterned condition numbers: Toeplitz and Hankel cases , 2007 .
[13] L. Trefethen. Spectra and pseudospectra , 2005 .
[14] Nicola Guglielmi,et al. Differential Equations for Roaming Pseudospectra: Paths to Extremal Points and Boundary Tracking , 2011, SIAM J. Numer. Anal..
[15] Lothar Reichel,et al. Tridiagonal Toeplitz matrices: properties and novel applications , 2013, Numer. Linear Algebra Appl..