Using Fourier–Legendre expansions to derive series for $\frac{1}{\pi}$ and $\frac{1}{\pi^{2}}$
暂无分享,去创建一个
[1] J. Borwein,et al. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .
[2] Jonathan M. Borwein,et al. Modular Equations and Approximations to π , 2000 .
[3] G. Bauer,et al. Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. , 1859 .
[4] D. V. Chudnovsky,et al. Approximations and complex multiplication according to Ramanujan , 2000 .
[5] Jesus Guillera,et al. On WZ-pairs which prove Ramanujan series , 2009, 0904.0406.
[6] John Michael Rassias. Geometry, Analysis and Mechanics , 1995 .
[7] Jet Wimp,et al. Computation with recurrence relations , 1986 .
[8] Doron Zeilberger,et al. A WZ proof of Ramanujan's Formula for Pi , 1993 .
[9] Mukarram Ahmad,et al. Continued fractions , 2019, Quadratic Number Theory.
[10] Bruce C. Berndt,et al. Ramanujan's Series for 1/π: A Survey , 2009, Am. Math. Mon..
[11] Jonathan M. Borwein,et al. Pi and the AGM , 1999 .