Role of Pseudomonas aeruginosa type III effectors in disease.

Pseudomonas aeruginosa uses a type III secretion system (T3SS) to directly inject four known effectors into host cells. ExoU is a potent cytotoxin with phospholipase A2 activity that causes rapid necrotic death in many cell types. The biological function of ExoY, an adenylate cyclase, remains incompletely defined. ExoS and ExoT are closely related bifunctional proteins with N-terminal GTPase activating protein (GAP) activity toward Rho family proteins and C-terminal ADP ribosylase (ADPRT) activity toward distinct and non-overlapping set of targets. While almost no strain encodes or secretes all four effectors, the commonly found combinations of ExoU/ExoT or ExoS/ExoT provides redundant and failsafe mechanisms to cause mucosal barrier injury, inhibit many arms of the innate immune response, and prevent wound repair.

[1]  D. Glidden,et al.  Increased mortality of ventilated patients with endotracheal Pseudomonas aeruginosa without clinical signs of infection* , 2008, Critical care medicine.

[2]  S. Lory,et al.  Acquisition and Evolution of the exoU Locus in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[3]  F. Sutterwala,et al.  Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome , 2007, The Journal of experimental medicine.

[4]  Jordi Rello,et al.  Severe Infections Caused by Pseudomonas Aeruginosa , 2003, Perspectives on Critical Care Infectious Diseases.

[5]  T. Sawa,et al.  Effect of anti-PcrV antibody in a murine chronic airway Pseudomonas aeruginosa infection model , 2007, European Respiratory Journal.

[6]  Jianjun Sun,et al.  How bacterial ADP-ribosylating toxins recognize substrates , 2004, Nature Structural &Molecular Biology.

[7]  R. Mallampalli,et al.  Proapoptotic effects of P. aeruginosa involve inhibition of surfactant phosphatidylcholine synthesis Published, JLR Papers in Press, July 25, 2006. , 2006, Journal of Lipid Research.

[8]  Gabriel Núñez,et al.  Frontline : Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation , 2007 .

[9]  K. Schey,et al.  ADP-ribosylation of cyclophilin A by Pseudomonas aeruginosa exoenzyme S. , 2006, Biochemistry.

[10]  J. Feix,et al.  Identification of superoxide dismutase as a cofactor for the pseudomonas type III toxin, ExoU. , 2006, Biochemistry.

[11]  G. Viboud,et al.  Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. , 2005, Annual review of microbiology.

[12]  Vincent T. Lee,et al.  Activities of Pseudomonas aeruginosa Effectors Secreted by the Type III Secretion System In Vitro and during Infection , 2005, Infection and Immunity.

[13]  J. Engel,et al.  Pseudomonas aeruginosa type III-secreted toxin ExoT inhibits host-cell division by targeting cytokinesis at multiple steps , 2006, Proceedings of the National Academy of Sciences.

[14]  J. Engel,et al.  The ubiquitin ligase Cbl-b limits Pseudomonas aeruginosa exotoxin T-mediated virulence. , 2007, The Journal of clinical investigation.

[15]  J. Musser,et al.  Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. , 2007, Trends in microbiology.

[16]  A. Prince,et al.  The Type III Toxins of Pseudomonas aeruginosa Disrupt Epithelial Barrier Function , 2007, Journal of bacteriology.

[17]  J. Engel Molecular Pathogenesis of Acute Pseudomonas Aeruginosa Infections , 2003 .

[18]  J. Engel,et al.  The ADP Ribosyltransferase Domain of Pseudomonas aeruginosa ExoT Contributes to Its Biological Activities , 2004, Infection and Immunity.

[19]  Sophie Bleves,et al.  The bacterial type VI secretion machine: yet another player for protein transport across membranes. , 2008, Microbiology.

[20]  A. Hauser,et al.  Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. , 2001, Microbiology.

[21]  J. Rello,et al.  Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. , 2002, Critical care medicine.

[22]  Shouguang Jin,et al.  ExoS of Pseudomonas aeruginosa induces apoptosis through a Fas receptor/caspase 8‐independent pathway in HeLa cells , 2006, Cellular microbiology.

[23]  S. McColley,et al.  Type III Secretion Phenotypes of Pseudomonas aeruginosa Strains Change during Infection of Individuals with Cystic Fibrosis , 2004, Journal of Clinical Microbiology.

[24]  Yue Zhang,et al.  Intracellular Trafficking of PseudomonasExoS, a Type III Cytotoxin , 2007, Traffic.

[25]  J. Wiener-Kronish,et al.  Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury , 1999, Nature Medicine.

[26]  D. Hume,et al.  Effector ExoU from the Type III Secretion System Is an Important Modulator of Gene Expression in Lung Epithelial Cells in Response to Pseudomonas aeruginosa Infection , 2003, Infection and Immunity.

[27]  K. Bieging,et al.  A C-Terminal Domain Targets the Pseudomonas aeruginosa Cytotoxin ExoU to the Plasma Membrane of Host Cells , 2006, Infection and Immunity.

[28]  J. Barbieri,et al.  Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 Regulator of Kinase (Crk) Proteins* , 2003, Journal of Biological Chemistry.

[29]  J. Sun,et al.  Pseudomonas aeruginosa ExoS and ExoT. , 2004, Reviews of physiology, biochemistry and pharmacology.

[30]  S. Lynch,et al.  Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia. , 2008, American journal of respiratory and critical care medicine.

[31]  A. Wullaert,et al.  The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1β maturation , 2007, Journal of cellular and molecular medicine.

[32]  T. Evans,et al.  The Type III Pseudomonal Exotoxin U Activates the c-Jun NH2-Terminal Kinase Pathway and Increases Human Epithelial Interleukin-8 Production , 2006, Infection and Immunity.

[33]  J. Engel,et al.  The Pseudomonas aeruginosa type III secreted toxin ExoT is necessary and sufficient to induce apoptosis in epithelial cells , 2008, Cellular microbiology.

[34]  D. Hassett,et al.  Modulation of lung epithelial functions by Pseudomonas aeruginosa. , 2005, Trends in microbiology.

[35]  David J. Evans,et al.  Actin cytoskeleton disruption by ExoY and its effects on Pseudomonas aeruginosa invasion. , 2005, FEMS microbiology letters.

[36]  D. Oxley,et al.  Eukaryotic localization, activation and ubiquitinylation of a bacterial type III secreted toxin , 2006, Cellular microbiology.

[37]  Qing Deng,et al.  Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. , 2008, Annual review of microbiology.

[38]  Qing Deng,et al.  Modulation of Host Cell Endocytosis by the Type III Cytotoxin, Pseudomonas ExoS , 2008, Traffic.

[39]  Alan Aderem,et al.  Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf , 2006, Nature Immunology.

[40]  D. Kalman,et al.  RNAi Screen Reveals an Abl Kinase-Dependent Host Cell Pathway Involved in Pseudomonas aeruginosa Internalization , 2008, PLoS pathogens.

[41]  M. Kosorok,et al.  Early Immune Response to the Components of the Type III System of Pseudomonas aeruginosa in Children with Cystic Fibrosis , 2005, Journal of Clinical Microbiology.

[42]  A. M. Saliba,et al.  Eicosanoid‐mediated proinflammatory activity of Pseudomonas aeruginosa ExoU , 2005, Cellular microbiology.

[43]  H. Baker,et al.  c-Jun NH2-Terminal Kinase-Mediated Signaling Is Essential for Pseudomonas aeruginosa ExoS-Induced Apoptosis , 2003, Infection and Immunity.

[44]  S. Lory,et al.  Pseudolipasin A Is a Specific Inhibitor for Phospholipase A2 Activity of Pseudomonas aeruginosa Cytotoxin ExoU , 2006, Infection and Immunity.

[45]  M. Saier,et al.  Protein secretion systems of Pseudomonas aeruginosa and P fluorescens. , 2003, Biochimica et biophysica acta.

[46]  A. Maresso,et al.  Pseudomonas aeruginosa ExoS ADP‐ribosyltransferase inhibits ERM phosphorylation , 2007, Cellular microbiology.

[47]  C. Ottmann,et al.  Phosphorylation‐independent interaction between 14‐3‐3 and exoenzyme S: from structure to pathogenesis , 2007, The EMBO journal.

[48]  S. Lory,et al.  Identification of Small Molecule Inhibitors of Pseudomonas aeruginosa Exoenzyme S Using a Yeast Phenotypic Screen , 2008, PLoS genetics.

[49]  Yue Zhang,et al.  Intracellular Localization of Type III-delivered Pseudomonas ExoS with Endosome Vesicles* , 2007, Journal of Biological Chemistry.

[50]  Samuel I. Miller,et al.  An inhibitor of gram-negative bacterial virulence protein secretion. , 2008, Cell host & microbe.