In-Situ Measurement of Hydrogen on Airless Planetary Bodies Using Laser-Induced Breakdown Spectroscopy

[1]  J. Bridges,et al.  A dehydrated space-weathered skin cloaking the hydrated interior of Ryugu , 2022, Nature Astronomy.

[2]  P. Wessels,et al.  VOILA on the LUVMI-X Rover: Laser-Induced Breakdown Spectroscopy for the Detection of Volatiles at the Lunar South Pole , 2022, Sensors.

[3]  P. Wessels,et al.  Assessing the Distribution of Water Ice and Other Volatiles at the Lunar South Pole with LUVMI-X: A Mission Concept , 2022, The Planetary Science Journal.

[4]  Weiming Xu,et al.  Design, Function, and Implementation of China's First LIBS Instrument (MarSCoDe) on the Zhurong Mars Rover , 2021, Atomic Spectroscopy.

[5]  Lutz Richter,et al.  Development of the VOILA LIBS instrument for volatiles scouting in polar regions of the Moon , 2021, International Conference on Space Optics.

[6]  R. Trautner,et al.  Dynamics of Subsurface Migration of Water on the Moon , 2021, Journal of Geophysical Research: Planets.

[7]  A. Doressoundiram,et al.  The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description , 2021, Space Science Reviews.

[8]  D. Reuter,et al.  Hydrogen abundance estimation and distribution on (101955) Bennu , 2021, Icarus.

[9]  J. Rullier,et al.  High power continuous wave laser heating of graphite in a high temperature range up to 3800 K , 2021 .

[10]  Justin M. McGlown,et al.  The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests , 2020, Space Science Reviews.

[11]  J. Kleinhenz,et al.  Case Studies for Lunar ISRU Systems Utilizing Polar Water , 2020, ASCEND 2020.

[12]  B. Schmitt,et al.  “Water” abundance at the surface of C-complex main-belt asteroids , 2020, Icarus.

[13]  T. Rigaudier,et al.  Hydrogen in chondrites: Influence of parent body alteration and atmospheric contamination on primordial components , 2020, Geochimica et Cosmochimica Acta.

[14]  W. Fa Bulk Density of the Lunar Regolith at the Chang'E‐3 Landing Site as Estimated From Lunar Penetrating Radar , 2020, Earth and Space Science.

[15]  R. Wiens,et al.  Hydrogen Variability in the Murray Formation, Gale Crater, Mars , 2019, Journal of geophysical research. Planets.

[16]  Paul G. Lucey,et al.  Direct evidence of surface exposed water ice in the lunar polar regions , 2018, Proceedings of the National Academy of Sciences.

[17]  X. H. Wang,et al.  Laser-induced plasma imaging for low-pressure detection. , 2018, Optics express.

[18]  O. Forni,et al.  Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy , 2017 .

[19]  Shuai Li,et al.  Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins , 2017, Science Advances.

[20]  Seiji Sugita,et al.  Quantitative Potassium Measurements with Laser-Induced Breakdown Spectroscopy Using Low-Energy Lasers: Application to In Situ K–Ar Geochronology for Planetary Exploration , 2017, Applied spectroscopy.

[21]  Steven C. Bender,et al.  Quantification of water content by laser induced breakdown spectroscopy on Mars , 2017 .

[22]  Stewart Clegg,et al.  Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database , 2017 .

[23]  Sridhar Mahadevan,et al.  Comparison of univariate and multivariate models for prediction of major and minor elements from laser-induced breakdown spectra with and without masking , 2016 .

[24]  O. Forni,et al.  Characterization of Hydrogen in Basaltic Materials With Laser‐Induced Breakdown Spectroscopy (LIBS) for Application to MSL ChemCam Data , 2016, Journal of Geophysical Research: Planets.

[25]  Yang Gao,et al.  Investigation of the properties of icy lunar polar regolith simulants , 2016 .

[26]  Kurt D. Retherford,et al.  Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements , 2015 .

[27]  T. Morota,et al.  High-precision potassium measurements using laser-induced breakdown spectroscopy under high vacuum conditions for in situ K–Ar dating of planetary surfaces , 2015 .

[28]  Stewart Clegg,et al.  Hydrogen detection with ChemCam at Gale crater , 2015 .

[29]  Lionel Canioni,et al.  Good practices in LIBS analysis: Review and advices , 2014 .

[30]  Pavel Yaroshchyk,et al.  Automatic correction of continuum background in Laser-induced Breakdown Spectroscopy using a model-free algorithm , 2014 .

[31]  B. Schmitt,et al.  The abundance and stability of “water” in type 1 and 2 carbonaceous chondrites (CI, CM and CR) , 2014 .

[32]  Kiichiro Kagawa,et al.  Review of Laser-Induced Plasma, Its Mechanism, and Application to Quantitative Analysis of Hydrogen and Deuterium , 2014 .

[33]  R. Bowden,et al.  The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions , 2013 .

[34]  M B Madsen,et al.  Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars , 2013, Science.

[35]  Robert L. Tokar,et al.  Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover , 2013 .

[36]  R. Jaumann,et al.  A brief review of chemical and mineralogical resources on the Moon and likely initial In Situ Resource Utilization (ISRU) applications , 2012 .

[37]  R. Bowden,et al.  The Provenances of Asteroids, and Their Contributions to the Volatile Inventories of the Terrestrial Planets , 2012, Science.

[38]  M. Saccoccio,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description , 2012 .

[39]  N. Bridges,et al.  The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests , 2012 .

[40]  Francisco Sobron,et al.  Extraction of compositional and hydration information of sulfates from laser-induced plasma spectra recorded under Mars atmospheric conditions — Implications for ChemCam investigations on Curiosity rover , 2012 .

[41]  William Marshall,et al.  Detection of Water in the LCROSS Ejecta Plume , 2010, Science.

[42]  A. S. Kozyrev,et al.  Hydrogen Mapping of the Lunar South Pole Using the LRO Neutron Detector Experiment LEND , 2010, Science.

[43]  Andrew J. Effenberger,et al.  Effect of Atmospheric Conditions on LIBS Spectra , 2010, Sensors.

[44]  Alan E. Rubin,et al.  Progressive aqueous alteration of CM carbonaceous chondrites , 2007 .

[45]  J. Mustard,et al.  Quantifying absolute water content of minerals using near‐infrared reflectance spectroscopy , 2005 .

[46]  A. Hofmann,et al.  GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards , 2005 .

[47]  David A. Cremers,et al.  Characterization of Laser-Induced Breakdown Spectroscopy (LIBS) for Application to Space Exploration , 2000 .

[48]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[49]  E. Jarosewich,et al.  Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses , 1990 .

[50]  Wojtek J. Krzanowski,et al.  Cross-Validation in Principal Component Analysis , 1987 .

[51]  F. J. Flanagan U.S. Geological Survey silicate rock standards , 1967 .

[52]  P. W. Levy,et al.  PROTON-INDUCED HYDROXYL FORMATION ON THE LUNAR SURFACE , 1966 .

[53]  Cai R. Ytsma,et al.  Effects of univariate and multivariate regression on the accuracy of hydrogen quantification with laser-induced breakdown spectroscopy , 2018 .

[54]  S. Clegg,et al.  Remote laser‐induced breakdown spectroscopy (LIBS) for lunar exploration , 2012 .

[55]  S. Maurice,et al.  Sensitivity of orbital neutron measurements to the thickness and abundance of surficial lunar water , 2011 .

[56]  S. Clegg,et al.  Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques , 2009 .