DOT Tomography of the Solar Atmosphere VII. Chromospheric Response to Acoustic Events

We use synchronous movies from the Dutch Open Telescope sampling the G band, Ca ii H, and Hα with five-wavelength profile sampling to study the response of the chromosphere to acoustic events in the underlying photosphere. We first compare the visibility of the chromosphere in Ca ii H and Hα, demonstrate that studying the chromosphere requires Hα data, and summarize recent developments in understanding why this is so. We construct divergence and vorticity maps of the photospheric flow field from the G-band images and locate specific events through the appearance of bright Ca ii H grains. The reaction of the Hα chromosphere is diagnosed in terms of brightness and Doppler shift. We show and discuss three particular cases in detail: a regular acoustic grain marking shock excitation by granular dynamics, a persistent flasher, which probably marks magnetic-field concentration, and an exploding granule. All three appear to buffet overlying fibrils, most clearly in Dopplergrams. Although our diagnostic displays to dissect these phenomena are unprecedentedly comprehensive, adding even more information (photospheric Doppler tomography and magnetograms along with chromospheric imaging and Doppler mapping in the ultraviolet) is warranted.

[1]  M. Carlsson,et al.  The Formation of Infrared Rydberg Lines , 1994 .

[2]  P. Sutterlin,et al.  DOT tomography of the solar atmosphere. IV. Magnetic patches in internetwork areas , 2005, 0706.2008.

[3]  M. Carlsson,et al.  Dynamic Hydrogen Ionization , 2002, astro-ph/0202313.

[4]  D. S. Bloomfield,et al.  MAGNETOHYDRODYNAMIC MODE COUPLING IN THE QUIET-SUN NETWORK , 2004 .

[5]  E. Avrett,et al.  Structure of the solar chromosphere. II - The underlying photosphere and temperature-minimum region , 1976 .

[6]  On the fine structure of the quiet solar Ca II K atmosphere , 2006, astro-ph/0611402.

[7]  M. Rast The Thermal Starting Plume as an Acoustic Source , 1999 .

[8]  M. Rast On the nature of exploding granules and granule fragmentation , 1995 .

[9]  Eugene H. Avrett,et al.  Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet sun , 1981 .

[10]  M. Rast,et al.  p-Mode Intensity-Velocity Phase Differences and Convective Sources , 2000 .

[11]  T. Rimmele,et al.  Small-scale topology of solar atmospheric dynamics - V. Acoustic events and internetwork grains , 2002 .

[12]  L. November,et al.  Measurement of geometric distortion in a turbulent atmosphere. , 1986, Applied optics.

[13]  Dynamics of the solar chromosphere V. High-frequency modulation in ultraviolet image sequences from TRACE , 2005, 0706.1987.

[14]  R. Stein,et al.  Excitation of Chromospheric Wave Transients by Collapsing Granules , 2000 .

[15]  M. Carlsson,et al.  Formation of Solar Calcium H and K Bright Grains , 1997 .

[16]  USA,et al.  Magnetoacoustic Shocks as a Driver of Quiet-Sun Mottles , 2007 .

[17]  Robert H. Hammerschlag,et al.  DOT tomography of the solar atmosphere. I. Telescope summary and program definition , 2004 .

[18]  M. Carlsson,et al.  DOT tomography of the solar atmosphere - VI. Magnetic elements as bright points in the blue wing of H$\mathsf{\alpha}$ , 2006 .

[19]  J. Leenaarts,et al.  DOT tomography of the solar atmosphere III. Observations and simulations of reversed granulation , 2005 .

[20]  The origin of the reversed granulation in the solar photosphere , 2006, astro-ph/0612464.

[21]  P. Goode,et al.  Localized Excitation of Solar Oscillations , 1992 .

[22]  Eric Stempels,et al.  Cool Stars, Stellar Systems and the Sun. , 2009 .

[23]  M. Carlsson,et al.  Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere , 2007, 0709.3751.

[24]  P. Goode,et al.  Waves in the solar photosphere , 1987 .

[25]  USA,et al.  High-Resolution Observations and Modeling of Dynamic Fibrils , 2007, astro-ph/0701786.

[26]  L. J. November,et al.  Precise Proper Motion Measurement of Solar Granulation , 1986 .

[27]  R. Shine,et al.  On Photospheric Flows and Chromospheric Corks , 1994 .

[28]  H. Uitenbroek,et al.  Ca ii H2v and K2v cell grains , 1991 .

[29]  T. Rimmele,et al.  Dark lanes in granulation and the excitation of solar oscillations , 1995 .

[30]  THE DYNAMICS OF THE EXCITATION OF SOLAR OSCILLATIONS , 2000 .

[31]  H. Babcock,et al.  The Sun's Magnetic Field, 1952-1954. , 1955 .

[32]  W. Kalkofen,et al.  Dynamics of the solar chromosphere. I - Long-period network oscillations , 1993 .

[33]  T. Berger,et al.  Dynamics of the Solar Chromosphere. II. Ca II H2V and K2V Grains versus Internetwork Fields , 1999 .

[34]  R. Shine,et al.  Dynamics of the solar chromosphere - III. Ultraviolet brightness oscillations from TRACE , 2001 .

[35]  A. D. Wijn,et al.  DOT tomography of the solar atmosphere. II. Reversed granulation in Ca II H , 2004 .

[36]  E. Avrett,et al.  Structure of the Solar Chromosphere. Basic Computations and Summary of the Results , 1973 .

[37]  M. van Noort,et al.  High-resolution observations of fast events in the solar chromosphere , 2006 .

[38]  T. Rimmele,et al.  On the Origin of Solar Oscillations , 1998, astro-ph/9801008.