Copper-doped 3D porous coating developed on Ti-6Al-4V alloys and its in vitro long-term antibacterial ability

[1]  L. Ren,et al.  Biomimetic robust superhydrophobic stainless-steel surfaces with antimicrobial activity and molecular dynamics simulation , 2019, Chemical Engineering Journal.

[2]  R. F. Zhang,et al.  Preparation and formation mechanism of copper incorporated micro-arc oxidation coatings developed on Ti-6Al-4V alloys , 2019, Surface and Coatings Technology.

[3]  I. Feliciello,et al.  RecF, UvrD, RecX and RecN proteins suppress DNA degradation at DNA double-strand breaks in Escherichia coli. , 2018, Biochimie.

[4]  P. Hartemann,et al.  Contact killing and antimicrobial properties of copper , 2018, Journal of applied microbiology.

[5]  Yingchun Miao,et al.  Preparation of novel Cu/TiO2 mischcrystal composites and antibacterial activities for Escherichia coli under visible light , 2017 .

[6]  Livia Visai,et al.  POLITECNICO DI TORINO Repository ISTITUZIONALE Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration / , 2022 .

[7]  Peng Wan,et al.  Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations. , 2016, Biomaterials.

[8]  P. Hartemann,et al.  Antimicrobial applications of copper. , 2016, International journal of hygiene and environmental health.

[9]  P. Chu,et al.  Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects , 2016, Scientific Reports.

[10]  Yong Han,et al.  The dual function of Cu-doped TiO2 coatings on titanium for application in percutaneous implants. , 2016, Journal of materials chemistry. B.

[11]  J. Valícek,et al.  SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate , 2016, Materials.

[12]  Angel T. Garcia-Esparza,et al.  Cu–Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO , 2016 .

[13]  S. Spriano,et al.  Antibacterial titanium surfaces for medical implants. , 2016, Materials science & engineering. C, Materials for biological applications.

[14]  F. Mücklich,et al.  Physicochemical properties of copper important for its antibacterial activity and development of a unified model. , 2016, Biointerphases.

[15]  V. Culotta,et al.  The Yin and Yang of copper during infection , 2016, JBIC Journal of Biological Inorganic Chemistry.

[16]  Wu Yuqing,et al.  The inhibition effect and mechanism of l-cysteine on the corrosion of bronze covered with a CuCl patina , 2015 .

[17]  M. Petris,et al.  Copper tolerance and virulence in bacteria. , 2015, Metallomics : integrated biometal science.

[18]  P. Smooker,et al.  Effects of erythromycin on the phenotypic and genotypic biofilm expression in two clinical Staphylococcus capitis subspecies and a functional analysis of Ica proteins in S. capitis. , 2015, Journal of medical microbiology.

[19]  Xiu Song,et al.  Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. , 2015, Materials science & engineering. C, Materials for biological applications.

[20]  R. Pappu,et al.  Intrinsically disordered C-terminal tails of E. coli single-stranded DNA binding protein regulate cooperative binding to single-stranded DNA. , 2015, Journal of molecular biology.

[21]  V. Kojić,et al.  Antimicrobial activity and biocompatibility of Ag+- and Cu2+-doped biphasic hydroxyapatite/α-tricalcium phosphate obtained from hydrothermally synthesized Ag+- and Cu2+-doped hydroxyapatite , 2014 .

[22]  B. Tang,et al.  Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation , 2014 .

[23]  Yingjun Wang,et al.  Biocompatibility of Si-incorporated TiO2 film prepared by micro-arc oxidation , 2014 .

[24]  H. Wong,et al.  Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. , 2013, Biomaterials.

[25]  Junying Sun,et al.  Biological Activity and Antibacterial Property of Nano-structured TiO2 Coating Incorporated with Cu Prepared by Micro-arc Oxidation , 2013 .

[26]  Arindam Pramanik,et al.  A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. , 2012, Colloids and surfaces. B, Biointerfaces.

[27]  Yan Mei,et al.  Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. , 2012, ACS applied materials & interfaces.

[28]  G. Węgrzyn,et al.  Central carbon metabolism influences fidelity of DNA replication in Escherichia coli. , 2012, Mutation research.

[29]  A. Boccaccini,et al.  Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. , 2012, Acta biomaterialia.

[30]  O. Akhavan,et al.  CuO/Cu(OH) 2 hierarchical nanostructures as bactericidal photocatalysts , 2011 .

[31]  Duane A Robinson,et al.  In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. , 2010, Acta biomaterialia.

[32]  Lingzhou Zhao,et al.  Antibacterial coatings on titanium implants. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[33]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[34]  A. H. Wang,et al.  Crystal structure of IcaR, a repressor of the TetR family implicated in biofilm formation in Staphylococcus epidermidis , 2008, Nucleic acids research.

[35]  Dietrich H. Nies,et al.  Contribution of Copper Ion Resistance to Survival of Escherichia coli on Metallic Copper Surfaces , 2007, Applied and Environmental Microbiology.

[36]  Mark H Schoenfisch,et al.  Reducing implant-related infections: active release strategies. , 2006, Chemical Society reviews.

[37]  K. Shimizu,et al.  The valence state of copper in anodic films formed on Al–1at.% Cu alloy , 2005 .

[38]  Xu Zirong,et al.  Antibacterial effects of the Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. , 2005, Veterinary microbiology.

[39]  D. Goldmann,et al.  The Teicoplanin-Associated Locus Regulator (TcaR) and the Intercellular Adhesin Locus Regulator (IcaR) Are Transcriptional Inhibitors of the ica Locus in Staphylococcus aureus , 2004, Journal of bacteriology.

[40]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .

[41]  H. Rohde,et al.  Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. , 2010, European journal of cell biology.