SSN: An R package for spatial statistical modeling on stream networks

The SSN package for R provides a set of functions for modeling stream network data. The package can import geographic information systems data or simulate new data as a ‘SpatialStreamNetwork’, a new object class that builds on the spatial sp classes. Functions are provided that fit spatial linear models (SLMs) for the ‘SpatialStreamNetwork’ object. The covariance matrix of the SLMs use distance metrics and geostatistical models that are unique to stream networks; these models account for the distances and topological configuration of stream networks, including the volume and direction of flowing water. In addition, traditional models that use Euclidean distance and simple random effects are included, along with Poisson and binomial families, for a generalized linear mixed model framework. Plotting and diagnostic functions are provided. Prediction (kriging) can be performed for missing data or for a separate set of unobserved locations, or block prediction (block kriging) can be used over sets of stream segments. This article summarizes the SSN package for importing, simulating, and modeling of stream network data, including diagnostics and prediction.

[1]  Erin E. Peterson,et al.  A Moving Average Approach for Spatial Statistical Models of Stream Networks , 2010 .

[2]  Edzer J. Pebesma,et al.  Applied Spatial Data Analysis with R - Second Edition , 2008, Use R!.

[3]  Charles E. Heckler,et al.  Applied Multivariate Statistical Analysis , 2005, Technometrics.

[4]  Nancy B. Grimm,et al.  SPATIAL HETEROGENEITY OF STREAM WATER NUTRIENT CONCENTRATIONS OVER SUCCESSIONAL TIME , 1999 .

[5]  Ana Ivelisse Avilés,et al.  Linear Mixed Models for Longitudinal Data , 2001, Technometrics.

[6]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[7]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[8]  Alexander Gribov,et al.  New Flexible Non-parametric Data Transformation for Trans-Gaussian Kriging , 2012 .

[9]  R. Wolfinger,et al.  Generalized linear mixed models a pseudo-likelihood approach , 1993 .

[10]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[11]  Guangqing Chi,et al.  Applied Spatial Data Analysis with R , 2015 .

[12]  Jay M. Ver Hoef,et al.  STARS: An ArcGIS Toolset Used to Calculate the Spatial Information Needed to Fit Spatial Statistical Models to Stream Network Data , 2014 .

[13]  S. Weisberg,et al.  Residuals and Influence in Regression , 1982 .

[14]  Brian D. Ripley,et al.  Modern applied statistics with S, 4th Edition , 2002, Statistics and computing.

[15]  J. Hoef,et al.  Spatial statistical models that use flow and stream distance , 2006, Environmental and Ecological Statistics.

[16]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[17]  Mary Kathryn Cowles,et al.  Unified Geostatistical Modeling for Data Fusion and Spatial Heteroskedasticity with R Package ramps , 2008 .

[18]  Paul C Hanson,et al.  Staying afloat in the sensor data deluge. , 2012, Trends in ecology & evolution.

[19]  Jay M. Ver Hoef,et al.  Spatial modelling and prediction on river networks: up model, down model or hybrid? , 2009 .

[20]  G. Blöschl,et al.  Top-kriging - geostatistics on stream networks , 2005 .

[21]  Bradley P Carlin,et al.  spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models. , 2007, Journal of statistical software.

[22]  Günter Blöschl,et al.  Comparing Geostatistical Models for River Networks , 2012 .

[23]  Edzer Pebesma,et al.  Rtop - an R package for interpolation along the stream network , 2012 .

[24]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[25]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[26]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[27]  Brian D. Ripley,et al.  geoRglm: A Package for Generalised Linear Spatial Models , 2002 .

[28]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[29]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[30]  Edzer J. Pebesma,et al.  Multivariable geostatistics in S: the gstat package , 2004, Comput. Geosci..

[31]  N. Cressie,et al.  Spatial prediction on a river network , 2006 .

[32]  Brian D. Ripley,et al.  Modern Applied Statistics with S Fourth edition , 2002 .

[33]  Michael L. Stein,et al.  Asymptotically Efficient Prediction of a Random Field with a Misspecified Covariance Function , 1988 .

[34]  James V. Zidek,et al.  Statistical Analysis of Environmental Space-Time Processes , 2006 .