Gaussian Process Latent Force Models for Learning and Stochastic Control of Physical Systems

This paper is concerned with learning and stochastic control in physical systems that contain unknown input signals. These unknown signals are modeled as Gaussian processes (GP) with certain parameterized covariance structures. The resulting latent force models can be seen as hybrid models that contain a first-principle physical model part and a nonparametric GP model part. We briefly review the statistical inference and learning methods for this kind of models, introduce stochastic control methodology for these models, and provide new theoretical observability and controllability results for them.

[1]  Andrew G. Alleyne,et al.  Design of a class of nonlinear controllers via state dependent Riccati equations , 2004, IEEE Transactions on Control Systems Technology.

[2]  Neil D. Lawrence,et al.  Latent Force Models , 2009, AISTATS.

[3]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[4]  Thomas B. Schön,et al.  Modeling and Interpolation of the Ambient Magnetic Field by Gaussian Processes , 2015, IEEE Transactions on Robotics.

[5]  Simo Särkkä,et al.  Approximate state-space Gaussian processes via spectral transformation , 2016, 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP).

[6]  Arno Solin,et al.  Stochastic Differential Equation Methods for Spatio-Temporal Gaussian Process Regression , 2016 .

[7]  G. GILBERTt CONTROLLABILITY AND OBSERVABILITY IN MULTIVARIABLE CONTROL SYSTEMS , 2022 .

[8]  Arno Solin,et al.  Hilbert space methods for reduced-rank Gaussian process regression , 2014, Stat. Comput..

[9]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[10]  Katsuhiko Ogata,et al.  Modern control engineering (3rd ed.) , 1996 .

[11]  Bernhard Schölkopf,et al.  Switched Latent Force Models for Movement Segmentation , 2010, NIPS.

[12]  C. Desoer,et al.  Controlability and observability of composite systems , 1967, IEEE Transactions on Automatic Control.

[13]  Arno Solin,et al.  Gaussian quadratures for state space approximation of scale mixtures of squared exponential covariance functions , 2014, 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[14]  Miguel Jerez,et al.  Filtering and Smoothing , 2018 .

[15]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[16]  Simo Särkkä,et al.  On convergence and accuracy of state-space approximations of squared exponential covariance functions , 2014, 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[17]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[18]  Simo Särkkä,et al.  Recursive Bayesian inference on stochastic differential equations , 2006 .

[19]  S. Särkkä,et al.  Infinite-dimensional Bayesian filtering for detection of quasiperiodic phenomena in spatiotemporal data. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Arno Solin,et al.  Spatiotemporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing: A Look at Gaussian Process Regression Through Kalman Filtering , 2013, IEEE Signal Processing Magazine.

[21]  Naresh K. Sinha,et al.  Controllability and observability of composite systems , 1977 .

[22]  Neil D. Lawrence,et al.  Linear Latent Force Models Using Gaussian Processes , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Simo Särkkä,et al.  Linear Operators and Stochastic Partial Differential Equations in Gaussian Process Regression , 2011, ICANN.

[24]  Neil D. Lawrence,et al.  Modelling transcriptional regulation using Gaussian Processes , 2006, NIPS.

[25]  Jouni Hartikainen,et al.  Kalman filtering and smoothing solutions to temporal Gaussian process regression models , 2010, 2010 IEEE International Workshop on Machine Learning for Signal Processing.

[26]  Arno Solin,et al.  Spatio-Temporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing , 2013 .

[27]  Simo Särkkä,et al.  Infinite-Dimensional Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression , 2012, AISTATS.

[28]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[29]  Simo Särkkä,et al.  State-Space Inference for Non-Linear Latent Force Models with Application to Satellite Orbit Prediction , 2012, ICML.

[30]  E. Davison,et al.  New results on the controllability and observability of general composite systems , 1975 .

[31]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[32]  Peter S. Maybeck,et al.  Stochastic Models, Estimation And Control , 2012 .

[33]  Arno Solin,et al.  Explicit Link Between Periodic Covariance Functions and State Space Models , 2014, AISTATS.

[34]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[35]  Giuseppe De Nicolao,et al.  Regularization networks: fast weight calculation via Kalman filtering , 2001, IEEE Trans. Neural Networks.

[36]  Simo Särkkä,et al.  Gaussian filtering and smoothing for continuous-discrete dynamic systems , 2013, Signal Process..

[37]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[38]  Neil D. Lawrence,et al.  Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities , 2008, ECCB.

[39]  Simo Särkkä,et al.  Sequential Inference for Latent Force Models , 2011, UAI.

[40]  Lei Guo,et al.  Disturbance-Observer-Based Control and Related Methods—An Overview , 2016, IEEE Transactions on Industrial Electronics.

[41]  B. Anderson,et al.  Detectability and Stabilizability of Time-Varying Discrete-Time Linear Systems , 1981 .

[42]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[43]  Feng Ding,et al.  Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems , 2009, Autom..

[44]  Neil D. Lawrence,et al.  Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison , 2012, BMC Systems Biology.

[45]  Maurizio Filippone,et al.  A comparative evaluation of stochastic-based inference methods for Gaussian process models , 2013, Machine Learning.

[46]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[47]  Giuseppe De Nicolao,et al.  Regularization networks for inverse problems: A state-space approach , 2003, Autom..

[48]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[49]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[50]  Neil D. Lawrence,et al.  Efficient Sampling for Gaussian Process Inference using Control Variables , 2008, NIPS.

[51]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.