p53 in survival, death and metabolic health: a lifeguard with a licence to kill

[1]  Darjus F. Tschaharganeh,et al.  p53-Dependent Nestin Regulation Links Tumor Suppression to Cellular Plasticity in Liver Cancer , 2016, Cell.

[2]  H. Anders,et al.  Murine Double Minute-2 Prevents p53-Overactivation-Related Cell Death (Podoptosis) of Podocytes. , 2015, Journal of the American Society of Nephrology : JASN.

[3]  W. Gu,et al.  Ferroptosis as a p53-mediated activity during tumour suppression , 2015, Nature.

[4]  N. Chandel,et al.  ROS-dependent signal transduction. , 2015, Current opinion in cell biology.

[5]  Andrea Glasauer,et al.  Targeting antioxidants for cancer therapy. , 2014, Biochemical pharmacology.

[6]  P. Schumacker,et al.  Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? , 2014, Nature Reviews Cancer.

[7]  J. Campisi,et al.  Senescence and apoptosis: dueling or complementary cell fates? , 2014, EMBO reports.

[8]  Z. Qin,et al.  TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy. , 2014, Cancer research.

[9]  D. Lane,et al.  Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response , 2014, Cell Death and Differentiation.

[10]  V. Rotter,et al.  p53: The barrier to cancer stem cell formation , 2014, FEBS letters.

[11]  R. Morrison,et al.  p53 and mitochondrial function in neurons. , 2014, Biochimica et biophysica acta.

[12]  Matthias Evert,et al.  p53-Dependent Nestin Regulation Links Tumor Suppression to Cellular Plasticity in Liver Cancer , 2014, Cell.

[13]  C. Deng,et al.  Tumor suppressor p53 cooperates with SIRT6 to regulate gluconeogenesis by promoting FoxO1 nuclear exclusion , 2014, Proceedings of the National Academy of Sciences.

[14]  D. M. Martin,et al.  Inappropriate p53 Activation During Development Induces Features of CHARGE Syndrome , 2014, Nature.

[15]  M. Malumbres,et al.  A centrosomal route for cancer genome instability , 2014, Nature Cell Biology.

[16]  D. Green,et al.  The DNA-binding domain mediates both nuclear and cytosolic functions of p53 , 2014, Nature Structural &Molecular Biology.

[17]  Gerald C. Chu,et al.  Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. , 2014, Cancer discovery.

[18]  R. Coleman,et al.  Ribosomal protein–Mdm2–p53 pathway coordinates nutrient stress with lipid metabolism by regulating MCD and promoting fatty acid oxidation , 2014, Proceedings of the National Academy of Sciences.

[19]  Z. Qin,et al.  A TIGAR-Regulated Metabolic Pathway Is Critical for Protection of Brain Ischemia , 2014, The Journal of Neuroscience.

[20]  K. Vousden,et al.  Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. , 2014, Cell reports.

[21]  H. Aburatani,et al.  Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. , 2014, Cell metabolism.

[22]  T. Shlomi,et al.  Quantitative flux analysis reveals folate-dependent NADPH production , 2014, Nature.

[23]  D. Green,et al.  To Be or Not to Be? How Selective Autophagy and Cell Death Govern Cell Fate , 2014, Cell.

[24]  L. Johnston,et al.  Supercompetitor status of Drosophila Myc cells requires p53 as a fitness sensor to reprogram metabolism and promote viability. , 2014, Cell metabolism.

[25]  Eric H. Baehrecke,et al.  Self-consumption: the interplay of autophagy and apoptosis , 2014, Nature Reviews Molecular Cell Biology.

[26]  P. Vandenabeele,et al.  Regulated necrosis: the expanding network of non-apoptotic cell death pathways , 2014, Nature Reviews Molecular Cell Biology.

[27]  D. Hood,et al.  p53 is necessary for the adaptive changes in cellular milieu subsequent to an acute bout of endurance exercise. , 2014, American journal of physiology. Cell physiology.

[28]  Patrick Leslie,et al.  Ribosomal proteins as unrevealed caretakers for cellular stress and genomic instability , 2014, Oncotarget.

[29]  P. Sykacek,et al.  A dual role for autophagy in a murine model of lung cancer , 2014, Nature Communications.

[30]  K. Vousden,et al.  The role of ubiquitin modification in the regulation of p53. , 2014, Biochimica et biophysica acta.

[31]  A. Levine,et al.  Tumor-Associated Mutant p53 Drives the Warburg Effect , 2013, Nature Communications.

[32]  Amy Y. M. Au,et al.  p53 status determines the role of autophagy in pancreatic tumour development , 2013, Nature.

[33]  T. Mak,et al.  Modulation of oxidative stress as an anticancer strategy , 2013, Nature Reviews Drug Discovery.

[34]  K. Vousden,et al.  Metabolic Regulation by p53 Family Members , 2013, Cell metabolism.

[35]  G. Wahl,et al.  AMP-Activated Protein Kinase Induces p53 by Phosphorylating MDMX and Inhibiting Its Activity , 2013, Molecular and Cellular Biology.

[36]  A. Letai,et al.  p53 regulates a non-apoptotic death induced by ROS , 2013, Cell Death and Differentiation.

[37]  A. Letai,et al.  High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. , 2013, Cell stem cell.

[38]  Ralph J DeBerardinis,et al.  Glutamine and cancer: cell biology, physiology, and clinical opportunities. , 2013, The Journal of clinical investigation.

[39]  Robert V Farese,et al.  Cellular fatty acid metabolism and cancer. , 2013, Cell metabolism.

[40]  Raphaël Porcher,et al.  p53 in breast cancer subtypes and new insights into response to chemotherapy. , 2013, Breast.

[41]  L. Attardi,et al.  TRP53 activates a global autophagy program to promote tumor suppression , 2013, Autophagy.

[42]  E. Cho,et al.  p53 regulates glucose metabolism by miR-34a. , 2013, Biochemical and biophysical research communications.

[43]  T. Jacks,et al.  Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. , 2013, Genes & development.

[44]  Douglas Strathdee,et al.  TIGAR Is Required for Efficient Intestinal Regeneration and Tumorigenesis , 2013, Developmental cell.

[45]  T. Shlomi,et al.  A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence , 2013, Nature.

[46]  A. Strasser,et al.  p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. , 2013, Cell reports.

[47]  A. Rosenwald,et al.  p53 DNA binding cooperativity is essential for apoptosis and tumor suppression in vivo. , 2013, Cell reports.

[48]  T. Palmer,et al.  Extracellular adenosine sensing-a metabolic cell death priming mechanism downstream of p53. , 2013, Molecular cell.

[49]  Gregory Stephanopoulos,et al.  The mTORC1 Pathway Stimulates Glutamine Metabolism and Cell Proliferation by Repressing SIRT4 , 2013, Cell.

[50]  J. Manfredi,et al.  Another fork in the road—life or death decisions by the tumour suppressor p53 , 2013, EMBO reports.

[51]  A. Sidow,et al.  Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. , 2013, Genes & development.

[52]  M. Welliver,et al.  The B55α subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. , 2013, Molecular cell.

[53]  Darjus F. Tschaharganeh,et al.  Non-Cell-Autonomous Tumor Suppression by p53 , 2013, Cell.

[54]  B. Polster AIF, reactive oxygen species, and neurodegeneration: A “complex” problem , 2013, Neurochemistry International.

[55]  V. Kolukula,et al.  Dissecting the pathways that destabilize mutant p53: The proteasome or autophagy? , 2013, Cell cycle.

[56]  R. Sachidanandam,et al.  A threshold mechanism mediates p53 cell fate decision between growth arrest and apoptosis , 2013, Cell Death and Differentiation.

[57]  D. Andrews,et al.  Mechanisms of action of Bcl-2 family proteins. , 2013, Cold Spring Harbor perspectives in biology.

[58]  B. Ogretmen,et al.  Folate Stress Induces Apoptosis via p53-dependent de Novo Ceramide Synthesis and Up-regulation of Ceramide Synthase 6* , 2013, The Journal of Biological Chemistry.

[59]  John M. Asara,et al.  Glutamine supports pancreatic cancer growth through a Kras-regulated metabolic pathway , 2013, Nature.

[60]  B. Faubert,et al.  Depletion of the novel p53-target gene carnitine palmitoyltransferase 1C delays tumor growth in the neurofibromatosis type I tumor model , 2013, Cell Death and Differentiation.

[61]  V. Rotter,et al.  p53 promotes the expression of gluconeogenesis-related genes and enhances hepatic glucose production , 2013, Cancer & metabolism.

[62]  W. Gu,et al.  p53-dependent regulation of metabolic function through transcriptional activation of pantothenate kinase-1 gene , 2013, Cell cycle.

[63]  D. Menendez,et al.  Interactions between the tumor suppressor p53 and immune responses , 2013, Current opinion in oncology.

[64]  Richard W. Kriwacki,et al.  PUMA Binding Induces Partial Unfolding within BCL-xL to Disrupt p53 Binding and Promote Apoptosis , 2012, Nature chemical biology.

[65]  J. Espinosa,et al.  The impact of post-transcriptional regulation in the p53 network , 2012, Briefings in functional genomics.

[66]  K. Wellen,et al.  Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence , 2012, Nature.

[67]  Karen Blyth,et al.  Serine starvation induces stress and p53 dependent metabolic remodeling in cancer cells , 2012, Nature.

[68]  Karen H. Vousden,et al.  Metabolic Regulation by p 53 Family Members , 2013 .

[69]  D. Cleveland,et al.  Centrosomes, chromosome instability (CIN) and aneuploidy. , 2012, Current opinion in cell biology.

[70]  K. Vousden,et al.  Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death , 2012, Proceedings of the National Academy of Sciences.

[71]  Eyal Gottlieb,et al.  Serine is a natural ligand and allosteric activator of pyruvate kinase M2 , 2012, Nature.

[72]  T. Mak,et al.  Molecular Pathways Molecular Pathways : Tumor Cells Co-opt the Brain-Speci fi c Metabolism Gene CPT 1 C to Promote Survival , 2012 .

[73]  H. Hermeking,et al.  MicroRNAs in the p53 network: micromanagement of tumour suppression , 2012, Nature Reviews Cancer.

[74]  D. Lane,et al.  How p53 wields the scales of fate , 2012, Transcription.

[75]  I. Ng,et al.  AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. , 2012, Cancer research.

[76]  U. Moll,et al.  p53 Opens the Mitochondrial Permeability Transition Pore to Trigger Necrosis , 2012, Cell.

[77]  Jeremy E. Purvis,et al.  p53 Dynamics Control Cell Fate , 2012, Science.

[78]  A. El‐Naggar,et al.  p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. , 2012, Cancer cell.

[79]  Wei Gu,et al.  Tumor Suppression in the Absence of p53-Mediated Cell-Cycle Arrest, Apoptosis, and Senescence , 2012, Cell.

[80]  Christopher C. Porter,et al.  ATM and MET kinases are synthetic lethal with non-genotoxic activation of p53 , 2012, Nature chemical biology.

[81]  Wei-Guo Zhu,et al.  Surf the Post-translational Modification Network of p53 Regulation , 2012, International journal of biological sciences.

[82]  S. Pervaiz,et al.  Redox regulation of p53, redox effectors regulated by p53: a subtle balance. , 2012, Antioxidants & redox signaling.

[83]  Simon C Watkins,et al.  p53/HMGB1 complexes regulate autophagy and apoptosis. , 2012, Cancer research.

[84]  In Hye Lee,et al.  Atg7 Modulates p53 Activity to Regulate Cell Cycle and Survival During Metabolic Stress , 2012, Science.

[85]  J. Espinosa,et al.  The p53 circuit board. , 2012, Biochimica et biophysica acta.

[86]  C. Harris,et al.  p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. , 2012, Cancer research.

[87]  W. Marston Linehan,et al.  Reductive carboxylation supports growth in tumor cells with defective mitochondria , 2011, Nature.

[88]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[89]  T. Mak,et al.  ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. , 2011, Molecular cell.

[90]  M. Scott,et al.  Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages , 2011, Proceedings of the National Academy of Sciences.

[91]  A. Levine,et al.  Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect , 2011, Proceedings of the National Academy of Sciences.

[92]  F. Recillas-Targa,et al.  Transcriptional and epigenetic regulation of the p53 tumor suppressor gene , 2011, Epigenetics.

[93]  Gregory Stephanopoulos,et al.  Amplification of phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis , 2012, BMC Proceedings.

[94]  E. Morselli,et al.  p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200 , 2011, Cell cycle.

[95]  Eytan Domany,et al.  Two phases of mitogenic signaling unveil roles for p53 and EGR1 in elimination of inconsistent growth signals. , 2011, Molecular cell.

[96]  M. Mclaughlin,et al.  Distinct p53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression , 2011, Cell.

[97]  Y. Eishi,et al.  Autophagy-deficient mice develop multiple liver tumors. , 2011, Genes & development.

[98]  X. Wang,et al.  Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death , 2011, Cell Death and Differentiation.

[99]  Marc Liesa,et al.  Pancreatic cancers require autophagy for tumor growth. , 2011, Genes & development.

[100]  H. Coller,et al.  Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. , 2011, Genes & development.

[101]  A. Mancuso,et al.  p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase , 2011, Nature Cell Biology.

[102]  Karen H. Vousden,et al.  Metabolic regulation by p53 , 2011, Journal of Molecular Medicine.

[103]  Chao Tang,et al.  Decision making of the p53 network: death by integration. , 2011, Journal of theoretical biology.

[104]  Karen H. Vousden,et al.  p53 and its mutants in tumor cell migration and invasion , 2011, The Journal of cell biology.

[105]  G. Lozano,et al.  Regulation of tissue‐ and stimulus‐specific cell fate decisions by p53 in vivo , 2011, The Journal of pathology.

[106]  M. Mclaughlin,et al.  Distinct p 53 Transcriptional Programs Dictate Acute DNA-Damage Responses and Tumor Suppression , 2011 .

[107]  S. Lowe,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2011, Nature.

[108]  L. Chin,et al.  Telomere dysfunction induces metabolic and mitochondrial compromise , 2011, Nature.

[109]  J. Norman,et al.  p 53 and its mutants in tumor cell migration and invasion , 2011 .

[110]  Youngho Seo,et al.  Selective activation of p53-mediated tumour suppression in high-grade tumours , 2010, Nature.

[111]  K. Yuen Chromosome Instability (CIN), Aneuploidy and Cancer , 2010 .

[112]  C. Prives,et al.  Transcriptional regulation by p53. , 2010, Cold Spring Harbor perspectives in biology.

[113]  A. Rosenwald,et al.  DNA binding cooperativity of p53 modulates the decision between cell-cycle arrest and apoptosis. , 2010, Molecular cell.

[114]  A. Levine,et al.  Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function , 2010, Proceedings of the National Academy of Sciences.

[115]  R. Medzhitov,et al.  p53-mediated hematopoietic stem and progenitor cell competition. , 2010, Cell stem cell.

[116]  Daniel J Klionsky,et al.  Mammalian autophagy: core molecular machinery and signaling regulation. , 2010, Current opinion in cell biology.

[117]  S. Sugano,et al.  Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species , 2010, Proceedings of the National Academy of Sciences.

[118]  Moshe Oren,et al.  Involvement of stromal p53 in tumor-stroma interactions. , 2010, Seminars in cell & developmental biology.

[119]  Pierre Hainaut,et al.  Massively regulated genes: the example of TP53 , 2010, The Journal of pathology.

[120]  C. Prives,et al.  Transcriptional Regulation by p 53 , 2010 .

[121]  Kevin M. Ryan,et al.  p53 and metabolism , 2009, Nature Reviews Cancer.

[122]  Robert S. Balaban,et al.  p53 Improves Aerobic Exercise Capacity and Augments Skeletal Muscle Mitochondrial DNA Content , 2009, Circulation research.

[123]  D. Lane,et al.  Specific activation of the p53 pathway by low dose actinomycin D: A new route to p53 based cyclotherapy , 2009, Cell cycle.

[124]  K. Vousden,et al.  Modulation of intracellular ROS levels by TIGAR controls autophagy , 2009, The EMBO journal.

[125]  T. Ichisaka,et al.  Suppression of induced pluripotent stem cell generation by the p53–p21 pathway , 2009, Nature.

[126]  M. Toledano,et al.  The guardian recruits cops: the p53-p21 axis delegates prosurvival duties to the Keap1-Nrf2 stress pathway. , 2009, Molecular cell.

[127]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[128]  Wei Gu,et al.  Modes of p53 Regulation , 2009, Cell.

[129]  U. Moll,et al.  The mitochondrial p53 pathway. , 2009, Biochimica et biophysica acta.

[130]  G. Shadel,et al.  Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. , 2009, Biochimica et biophysica acta.

[131]  C. Prives,et al.  Blinded by the Light: The Growing Complexity of p53 , 2009, Cell.

[132]  D. Green,et al.  Cytoplasmic functions of the tumour suppressor p53 , 2009, Nature.

[133]  E. Cho,et al.  A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress , 2009, Cell Death and Differentiation.

[134]  Todd D. Westergard,et al.  The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage , 2009, Proceedings of the National Academy of Sciences.

[135]  U. Moll,et al.  The mitochondrial p 53 pathway , 2009 .

[136]  W. Gu,et al.  Leading Edge Review Modes of p 53 Regulation , 2009 .

[137]  M. Toledano Guardian Recruits Cops : The p 53-p 21 Axis Delegates Prosurvival Duties to the Keap 1-Nrf 2 Stress Pathway , 2009 .

[138]  T. Dawson,et al.  Mitochondrial and Nuclear Cross Talk in Cell Death , 2008, Annals of the New York Academy of Sciences.

[139]  Judith Campisi,et al.  Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor , 2008, PLoS biology.

[140]  E. Morselli,et al.  p53 represses autophagy in a cell cycle-dependent fashion , 2008, Cell cycle.

[141]  M. Karin,et al.  p53 Target Genes Sestrin1 and Sestrin2 Connect Genotoxic Stress and mTOR Signaling , 2008, Cell.

[142]  Sandy Chang,et al.  Telomere dysfunction and tumour suppression: the senescence connection , 2008, Nature Reviews Cancer.

[143]  Nobuyuki Tanaka,et al.  p53 regulates glucose metabolism through an IKK-NF-κB pathway and inhibits cell transformation , 2008, Nature Cell Biology.

[144]  Eduardo Sontag,et al.  Transcriptional control of human p53-regulated genes , 2008, Nature Reviews Molecular Cell Biology.

[145]  Jiri Bartek,et al.  An Oncogene-Induced DNA Damage Model for Cancer Development , 2008, Science.

[146]  M. Oren,et al.  Living with p53, Dying of p53 , 2007, Cell.

[147]  Michael R. Green,et al.  Inhibition of tumor angiogenesis by p53: a new role for the guardian of the genome , 2007, Journal of Molecular Medicine.

[148]  A. Levine,et al.  The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. , 2007, Cancer research.

[149]  Ronald A. DePinho,et al.  Cancer biology: Gone but not forgotten , 2007, Nature.

[150]  T. Jacks,et al.  Restoration of p53 function leads to tumour regression in vivo , 2007, Nature.

[151]  T. Russo,et al.  p53 Suppresses the Nrf2-dependent Transcription of Antioxidant Response Genes* , 2006, Journal of Biological Chemistry.

[152]  Gerard I. Evan,et al.  Modeling the Therapeutic Efficacy of p53 Restoration in Tumors , 2006, Cell.

[153]  V. Rotter,et al.  Regulation of AIF expression by p53 , 2006, Cell Death and Differentiation.

[154]  R. Bernards,et al.  Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence , 2006, Nature Cell Biology.

[155]  Kevin M. Ryan,et al.  DRAM, a p53-Induced Modulator of Autophagy, Is Critical for Apoptosis , 2006, Cell.

[156]  Eyal Gottlieb,et al.  TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis , 2006, Cell.

[157]  Oksana Gavrilova,et al.  p53 Regulates Mitochondrial Respiration , 2006, Science.

[158]  D. Green,et al.  Dissecting p53-dependent apoptosis , 2006, Cell Death and Differentiation.

[159]  S. Armstrong,et al.  Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. , 2006, Cancer cell.

[160]  A. Rivera,et al.  The p53-induced Gene-6 (Proline Oxidase) Mediates Apoptosis through a Calcineurin-dependent Pathway* , 2005, Journal of Biological Chemistry.

[161]  Jian Yu,et al.  The transcriptional targets of p53 in apoptosis control. , 2005, Biochemical and biophysical research communications.

[162]  Russell G. Jones,et al.  AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. , 2005, Molecular cell.

[163]  David Beach,et al.  Glycolytic enzymes can modulate cellular life span. , 2005, Cancer research.

[164]  C. Harris,et al.  p53: traffic cop at the crossroads of DNA repair and recombination , 2005, Nature Reviews Molecular Cell Biology.

[165]  Leah E. Mechanic,et al.  p53-Induced Up-Regulation of MnSOD and GPx but not Catalase Increases Oxidative Stress and Apoptosis , 2004, Cancer Research.

[166]  Yusuke Nakamura,et al.  Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses , 2004, Journal of Human Genetics.

[167]  Arnold J. Levine,et al.  Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[168]  Jian Yu,et al.  No PUMA, no death: implications for p53-dependent apoptosis. , 2003, Cancer cell.

[169]  K. Hanada,et al.  Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. , 2003, Biochimica et biophysica acta.

[170]  Stephen N. Jones,et al.  p53 mutant mice that display early ageing-associated phenotypes , 2002, Nature.

[171]  E. May,et al.  Reciprocal down-regulation of p53 and SOD2 gene expression–implication in p53 mediated apoptosis , 2001, Oncogene.

[172]  K. Chien,et al.  p 53 Is a Transcriptional Activator of the Muscle-specific Phosphoglycerate Mutase Gene and Contributes in Vivo to the Control of Its Cardiac Expression 1 , 2000 .

[173]  H. Hibshoosh,et al.  Induction of autophagy and inhibition of tumorigenesis by beclin 1 , 1999, Nature.

[174]  K. Kinzler,et al.  A model for p53-induced apoptosis , 1997, Nature.

[175]  Saroj P. Mathupala,et al.  Glucose Catabolism in Cancer Cells , 1997, The Journal of Biological Chemistry.

[176]  V. Rotter,et al.  Involvement of p53 in cell differentiation and development. , 1997, Biochimica et biophysica acta.

[177]  Wenyi Wei,et al.  Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. , 1997, Science.

[178]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[179]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[180]  X. Chen,et al.  p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. , 1996, Genes & development.

[181]  James Brugarolas,et al.  Radiation-induced cell cycle arrest compromised by p21 deficiency , 1995, Nature.

[182]  Stephen J. Elledge,et al.  Mice Lacking p21 CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control , 1995, Cell.

[183]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[184]  P. Shaw,et al.  Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[185]  A. Kimchi,et al.  Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6 , 1991, Nature.