Applications of Microplasmas and Microreactor Technology

During the last decade a number of microcavity plasma devices have been developed. Examples are microhollow cathode (MHC) discharges and cathode boundary layer (CBL) discharges proposed by Schoenbach, capillary plasma electrode (CPE) discharges proposed by Kunhardt and Becker, and micro-structured electrode arrays (MSEs) introduced by Gericke and Penache. Arrays of microplasmas based on silicon, ceramic, or metal/polymer structures were investigated by Eden, Frame, Park and coworkers. A breakthrough in the life expectancy of such devices was achieved when all metal electrodes were covered by dielectrics, thus combining dielectric-barrier discharge technology with microcavity plasma devices. The advantage of this technology is that large numbers of miniature atmospheric-pressure non-equilibrium discharges can be operated in parallel. Applications include emitters for visible and UV radiation, photodetectors, sensors, decontamination, surface modification, etching, film deposition, generation of nanoparticles. Operated in different gas mixtures many of these devices proved to be efficient emitters of ultraviolet excimer radiation. If a small gas flow is fed through these microplasmas applications for plasmachemical synthesis and pollution control become feasible. Novel applications are expected from the combination of microreactor technology with non-equilibrium plasma chemistry. Doping or coating of the dielectric surfaces results in additional catalytic effects. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  H. Y. Fan The Transition from Glow Discharge to Arc , 1939 .

[2]  Christos Christodoulatos,et al.  Environmental and biological applications of microplasmas , 2005 .

[3]  K. Schoenbach,et al.  Microhollow cathode discharges , 2003 .

[4]  K. V. Kozlov,et al.  Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure , 2001 .

[5]  Atmospheric pressure microplasmas for modifying sealed microfluidic devices , 2004 .

[6]  R. Wendt,et al.  The density and decay of metastable and resonance atoms in a single filament of a dielectric barrier discharge , 1998 .

[7]  K. Gericke,et al.  Microstructure electrodes as a means of creating uniform discharges at atmospheric pressure , 2002 .

[8]  M. Tokeshi,et al.  Glass microchip with three-dimensional microchannel network for 2 x 2 parallel synthesis. , 2002, Lab on a chip.

[9]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[10]  M. Kushner Modelling of microdischarge devices: plasma and gas dynamics , 2005 .

[11]  Z. Falkenstein Influence of ultraviolet illumination on microdischarge behavior in dry and humid N2, O2, air, and Ar/O2: The Joshi effect , 1997 .

[12]  Karl H. Schoenbach,et al.  Non-Equilibrium Air Plasmas at Atmospheric Pressure , 2004 .

[13]  U. Küchler,et al.  Microdischarges in air-fed ozonizers , 1991 .

[14]  Y. Kishimoto,et al.  Diagnostics of microdischarge-integrated plasma sources for display and materials processing , 2005 .

[15]  Karl H. Schoenbach,et al.  Microplasmas and applications , 2006 .

[16]  Bakhtier Farouk,et al.  Characterization of a dc atmospheric pressure normal glow discharge , 2005 .

[17]  N. F. de Rooij,et al.  Microfluidics meets MEMS , 2003, Proc. IEEE.

[18]  Karl H. Schoenbach,et al.  Emission of excimer radiation from direct current, high-pressure hollow cathode discharges , 1998 .

[19]  A. Mizuno,et al.  DC microdischarges inside porous ceramics , 2005, IEEE Transactions on Plasma Science.

[20]  K. Yasuoka,et al.  Atmospheric dc discharges with miniature gas flow as microplasma generation method , 2005 .

[21]  H. Becker,et al.  Polymer microfluidic devices. , 2002, Talanta.

[22]  A. Sappey,et al.  Distribution of OH within silent discharge plasma reactors , 1996 .

[23]  K. Terashima,et al.  Application of microscale plasma to material processing , 2001 .

[24]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[25]  Konstantinos P. Giapis,et al.  Hollow cathode sustained plasma microjets: Characterization and application to diamond deposition , 2002 .

[26]  Konstantinos P. Giapis,et al.  Maskless etching of silicon using patterned microdischarges , 2001 .

[27]  Michael Hirth,et al.  Ozone synthesis from oxygen in dielectric barrier discharges , 1987 .

[28]  Y. Horiike,et al.  Capacitively Coupled Microplasma Source on a Chip at Atmospheric Pressure , 2001 .

[29]  Jan C.T. Eijkel,et al.  Miniaturization and chip technology. What can we expect? , 2001 .

[30]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[31]  J. Boeuf Plasma display panels: physics, recent developments and key issues , 2003 .

[32]  K. Schoenbach,et al.  Self-organization in cathode boundary layer microdischarges , 2004 .

[33]  de Jeff Hosson,et al.  SURFACE ENGINEERING: IN MATERIALS SCIENCE II , 2003 .

[34]  U. Kogelschatz Atmospheric-pressure plasma technology , 2004 .

[35]  K. Becker,et al.  Hydrogen Lyman-alpha and Lyman-beta emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures , 1999 .

[36]  Z. Hubička,et al.  Measurement of the Parameters of Atmospheric‐Pressure Barrier‐Torch Discharge , 2005 .

[37]  Fritz B. Prinz,et al.  Electro-discharge machining of mesoscopic parts with electroplated copper and hot-pressed silver tungsten electrodes , 2000 .

[38]  S. Büttgenbach,et al.  A micro plasma reactor for fluorinated waste gas treatment , 2004 .

[39]  J. Eden,et al.  Microdischarge devices with a nanoporous Al/sub 2/O/sub 3/ dielectric: operation in Ne and air , 2005, IEEE Transactions on Plasma Science.

[40]  Kuo-Feng Chen,et al.  Recent advances in microcavity plasma devices and arrays: a versatile photonic platform , 2005 .

[41]  K. V. Kozlov,et al.  Axial and radial development of microdischarges of barrier discharges in N2/O2 mixtures at atmospheric pressure , 2005 .

[42]  Kay Niemax,et al.  Diagnostics and application of the microhollow cathode discharge as an analytical plasma , 2005 .

[43]  Eva Stoffels,et al.  Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials , 2002 .

[44]  M. Neiger,et al.  Dielectric barrier discharges with steep voltage rise: mapping of atomic nitrogen in single filaments measured by laser-induced fluorescence spectroscopy , 2001 .

[45]  V. Gibalov,et al.  The magnitude of the transferred charge in the silent discharge in oxygen , 1987 .

[46]  K. Niemax,et al.  Plasmas for lab-on-the-chip applications , 2002 .

[47]  M. Hirth Teilprozesse bei der Ozonerzeugung mittels stiller elektrischer Entladungen. I. Die elektrische Entladung im Ozonisator , 1981 .

[48]  James Gary Eden,et al.  Development and characterization of micromachined hollow cathode plasma display devices , 2002 .

[49]  Franklin Chau-Nan Hong,et al.  Radio-frequency microdischarge arrays for large-area cold atmospheric plasma generation , 2003 .

[50]  N. Bings,et al.  Microstrip microwave induced plasma on a chip for atomic emission spectral analysis , 2005, IEEE Transactions on Plasma Science.

[51]  D. J. Harrison,et al.  Integrated capillary electrophoresis devices with an efficient postcolumn reactor in planar quartz and glass chips. , 1996, Analytical chemistry.

[52]  S. Büttgenbach,et al.  Micro-structured electrode arrays: high-frequency discharges at atmospheric pressure—characterization and new applications , 2004 .

[53]  Jaeyoung Park,et al.  The atmospheric-pressure plasma jet: a review and comparison to other plasma sources , 1998 .

[54]  J. Eden,et al.  Excitation of a microdischarge with a reverse-biased pn junction , 2001 .

[55]  Jan C.T. Eijkel,et al.  An atmospheric pressure dc glow discharge on a microchip and its application as a molecular emission detector , 2000 .

[56]  Konstantinos P. Giapis,et al.  High-pressure micro-discharges in etching and deposition applications , 2003 .

[57]  K. Schoenbach,et al.  Xenon excimer emission from pulsed microhollow cathode discharges , 2001 .

[58]  Mark J. Kushner,et al.  Modeling of microdischarge devices: Pyramidal structures , 2004 .

[59]  Ulrich Kogelschatz,et al.  From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges , 1999 .

[60]  U. Kogelschatz,et al.  Filamentary, patterned, and diffuse barrier discharges , 2002 .

[61]  T. Detemple,et al.  Microdischarge devices fabricated in silicon , 1997 .

[62]  Andrew G. Glen,et al.  APPL , 2001 .

[63]  G. L. Benavides,et al.  High aspect ratio meso-scale parts enabled by wire micro-EDM , 2002 .

[64]  Stephane Pasquiers,et al.  Oxidation of 2-heptanone in air by a DBD-type plasma generated within a honeycomb monolith supported Pt-based catalyst , 2004 .

[65]  Erich E. Kunhardt,et al.  Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas , 2000 .

[66]  J. Eden,et al.  Photodetection in the visible, ultraviolet, and near-infrared with silicon microdischarge devices , 2002 .

[67]  T. Detemple,et al.  Continuous-wave emission in the ultraviolet from diatomic excimers in a microdischarge , 1998 .

[68]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[69]  S. Büttgenbach,et al.  Micro-structured electrode arrays: atmospheric pressure plasma processes and applications , 2003 .

[70]  R. M. Sankaran,et al.  Argon excimer emission from high-pressure microdischarges in metal capillaries , 2003 .

[71]  H. Kojima,et al.  Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor , 2005 .

[72]  Particle-in-cell simulation of gas breakdown in microgaps , 2004, physics/0409131.