Mesoscale DNA feature in antibody-coding sequence facilitates somatic hypermutation

[1]  Ryan D. Morin,et al.  Super-enhancer hypermutation alters oncogene expression in B cell lymphoma , 2022, Nature.

[2]  Jonathan R. McDaniel,et al.  THE MAJOR ROLE OF JUNCTIONAL DIVERSITY IN THE HORSE ANTIBODY REPERTOIRE , 2022, bioRxiv.

[3]  F. Alt,et al.  C‐terminal deletion‐induced condensation sequesters AID from IgH targets in immunodeficiency , 2022, The EMBO journal.

[4]  Kui Wu,et al.  Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas , 2020, The Journal of experimental medicine.

[5]  T. Gui,et al.  REV7 is required for processing AID initiated DNA lesions in activated B cells , 2020, Nature Communications.

[6]  F. Alt,et al.  BCR selection and affinity maturation in Peyer’s patch germinal centres , 2020, Nature.

[7]  R. Roeder,et al.  AID–RNA polymerase II transcription-dependent deamination of IgV DNA , 2019, Nucleic acids research.

[8]  Peter D. Kwong,et al.  cAb-Rep: A Database of Curated Antibody Repertoires for Exploring Antibody Diversity and Predicting Antibody Prevalence , 2019, bioRxiv.

[9]  Michael S. Lawrence,et al.  Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features , 2019, Science.

[10]  J. Cyster,et al.  B Cell Responses: Cell Interaction Dynamics and Decisions , 2019, Cell.

[11]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[12]  F. Alt,et al.  AID Recognizes Structured DNA for Class Switch Recombination. , 2017, Molecular cell.

[13]  Rommie E. Amaro,et al.  Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B , 2016, Nature Structural &Molecular Biology.

[14]  L. Wysocki,et al.  Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes , 2016, Front. Immunol..

[15]  C. Landes,et al.  Measuring the Hydrodynamic Size of Nanoparticles Using Fluctuation Correlation Spectroscopy. , 2016, Annual review of physical chemistry.

[16]  J. Chaudhuri,et al.  Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity , 2016, Nature Reviews Immunology.

[17]  Thomas B. Kepler,et al.  Sequence-Intrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes , 2015, Cell.

[18]  J. Chaudhuri,et al.  Non-coding RNA Generated following Lariat Debranching Mediates Targeting of AID to DNA , 2015, Cell.

[19]  Aviv Bergman,et al.  Overlapping hotspots in CDRs are critical sites for V region diversification , 2015, Proceedings of the National Academy of Sciences.

[20]  D. Schatz,et al.  Super-Enhancer Transcription Converges on AID , 2014, Cell.

[21]  Yijun Ruan,et al.  B Cell Super-Enhancers and Regulatory Clusters Recruit AID Tumorigenic Activity , 2014, Cell.

[22]  James E. Bradner,et al.  Convergent Transcription at Intragenic Super-Enhancers Targets AID-Initiated Genomic Instability , 2014, Cell.

[23]  R. Rabadán,et al.  Noncoding RNA transcription targets AID to divergently transcribed loci in B cells , 2014, Nature.

[24]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[25]  L. Macdonald,et al.  Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice , 2014, Proceedings of the National Academy of Sciences.

[26]  Anneliese O. Speak,et al.  Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery , 2014, Nature Biotechnology.

[27]  Ning Ma,et al.  IgBLAST: an immunoglobulin variable domain sequence analysis tool , 2013, Nucleic Acids Res..

[28]  Tongqing Zhou,et al.  Somatic Mutations of the Immunoglobulin Framework Are Generally Required for Broad and Potent HIV-1 Neutralization , 2013, Cell.

[29]  Yu Zhang,et al.  Mechanisms of Programmed DNA Lesions and Genomic Instability in the Immune System , 2013, Cell.

[30]  Erik Aronesty,et al.  Comparison of Sequencing Utility Programs , 2013 .

[31]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[32]  B. Helmink,et al.  The response to and repair of RAG-mediated DNA double-strand breaks. , 2012, Annual review of immunology.

[33]  J. Florián,et al.  Intramolecular base stacking of dinucleoside monophosphate anions in aqueous solution. , 2012, The journal of physical chemistry. B.

[34]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[35]  Alberto Martin,et al.  Negative Supercoiling Creates Single-Stranded Patches of DNA That Are Substrates for AID–Mediated Mutagenesis , 2012, PLoS genetics.

[36]  D. Schatz,et al.  V(D)J recombination: mechanisms of initiation. , 2011, Annual review of genetics.

[37]  Kefei Yu,et al.  Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination , 2011, Proceedings of the National Academy of Sciences.

[38]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[39]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[40]  Liming Ren,et al.  A comprehensive analysis of germline and expressed immunoglobulin repertoire in the horse. , 2010, Developmental and comparative immunology.

[41]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[42]  Sergio Roa,et al.  The biochemistry of somatic hypermutation. , 2008, Annual review of immunology.

[43]  D. Schatz,et al.  Two levels of protection for the B cell genome during somatic hypermutation , 2008, Nature.

[44]  M. Neuberger,et al.  Molecular mechanisms of antibody somatic hypermutation. , 2007, Annual review of biochemistry.

[45]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[46]  Patrice Duroux,et al.  IMGT/LIGM-DB, the IMGT® comprehensive database of immunoglobulin and T cell receptor nucleotide sequences , 2005, Nucleic Acids Res..

[47]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[48]  K. Rhee,et al.  Intestinal bacteria and development of the B-lymphocyte repertoire. , 2005, Trends in immunology.

[49]  Jérôme Lane,et al.  IMGT®, the international ImMunoGeneTics information system® , 2004, Nucleic Acids Res..

[50]  M. Neuberger,et al.  Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. , 2004, Molecular cell.

[51]  Sachdev S Sidhu,et al.  Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Ha,et al.  Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. , 2004, Biophysical journal.

[53]  M. Lieber,et al.  DNA Substrate Length and Surrounding Sequence Affect the Activation-induced Deaminase Activity at Cytidine* , 2004, Journal of Biological Chemistry.

[54]  M. Lieber,et al.  Nucleic acid structures and enzymes in the immunoglobulin class switch recombination mechanism. , 2003, DNA repair.

[55]  M. Goodman,et al.  Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation , 2003, Nature.

[56]  M. Lieber,et al.  R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells , 2003, Nature Immunology.

[57]  F. Alt,et al.  Transcription-targeted DNA deamination by the AID antibody diversification enzyme , 2003, Nature.

[58]  Toshiro Matsuda,et al.  Somatic mutation hotspots correlate with DNA polymerase η error spectrum , 2001, Nature Immunology.

[59]  K. Rajewsky,et al.  DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. , 2000, Immunity.

[60]  A Libchaber,et al.  Sequence dependent rigidity of single stranded DNA. , 2000, Physical review letters.

[61]  T. Honjo,et al.  Class Switch Recombination and Hypermutation Require Activation-Induced Cytidine Deaminase (AID), a Potential RNA Editing Enzyme , 2000, Cell.

[62]  A. Fischer,et al.  Activation-Induced Cytidine Deaminase (AID) Deficiency Causes the Autosomal Recessive Form of the Hyper-IgM Syndrome (HIGM2) , 2000, Cell.

[63]  P. Hagerman,et al.  Flexibility of single-stranded DNA: use of gapped duplex helices to determine the persistence lengths of poly(dT) and poly(dA). , 1999, Journal of molecular biology.

[64]  C. Bustamante,et al.  Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. , 1998, Journal of molecular biology.

[65]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[66]  T. Kepler Codon bias and plasticity in immunoglobulins. , 1997, Molecular biology and evolution.

[67]  R. Brezinschek,et al.  Analysis of the frequency and pattern of somatic mutations within nonproductively rearranged human variable heavy chain genes. , 1997, Journal of immunology.

[68]  K. Rajewsky Clonal selection and learning in the antibody system , 1996, Nature.

[69]  C. Milstein,et al.  The targeting of somatic hypermutation. , 1996, Seminars in immunology.

[70]  T. Honjo,et al.  High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. , 1996, International immunology.

[71]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[72]  C. Milstein,et al.  Codon bias targets mutation , 1995, Nature.

[73]  J. Weill,et al.  Hypermutation generating the sheep immunoglobulin repertoire is an antigen-independent process , 1995, Cell.

[74]  R. Mage,et al.  Rabbit IgH sequences in appendix germinal centers: VH diversification by gene conversion-like and hypermutation mechanisms. , 1994, Immunity.

[75]  C. Milstein,et al.  Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[76]  N A Kolchanov,et al.  Somatic hypermutagenesis in immunoglobulin genes. II. Influence of neighbouring base sequences on mutagenesis. , 1992, Biochimica et biophysica acta.

[77]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[78]  D. Baltimore,et al.  Somatic variants of murine immunoglobulin λ light chains , 1982, Nature.

[79]  Leroy Hood,et al.  A single VH gene segment encodes the immune response to phosphorylcholine: Somatic mutation is correlated with the class of the antibody , 1981, Cell.

[80]  D. Baltimore,et al.  Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a γ2a variable region , 1981, Cell.

[81]  E. Kabat,et al.  ATTEMPTS TO LOCATE COMPLEMENTARITY‐DETERMINING RESIDUES IN THE VARIABLE POSITIONS OF LIGHT AND HEAVY CHAINS * , 1971, Annals of the New York Academy of Sciences.

[82]  OUP accepted manuscript , 2022, Nucleic Acids Research.

[83]  Zhang Huizhi,et al.  Principles of fluorescence correlation spectroscopy applied to studies of biomolecular liquid–liquid phase separation , 2022, Biophysics reports.

[84]  Fei-Long Meng,et al.  Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. , 2019, Advances in immunology.

[85]  D. Calado,et al.  Germinal Centers , 2017, Methods in Molecular Biology.

[86]  P. Gearhart,et al.  DNA polymerase η is an A-T mutator in somatic hypermutation of immunoglobulin variable genes , 2001, Nature Immunology.