Improved Photoelectric Performance with Self-Powered Characteristics through TiO2 Surface Passivation in an α-Ga2O3 Nanorod Array Deep Ultraviolet Photodetector

[1]  Chao Wu,et al.  Solution-processed Y-Doped SnSrO3 electron transport layer for Ga2O3 based heterojunction solar-blind photodetector with high sensitivity , 2022, Vacuum.

[2]  Huaping Wu,et al.  Work function tunable laser induced graphene electrodes for Schottky type solar-blind photodetectors , 2022, Applied Physics Letters.

[3]  Chao Wu,et al.  A General Strategy to Ultrasensitive Ga2O3 Based Self-Powered Solar-blind Photodetectors , 2022, Materials Today Physics.

[4]  F. Liang,et al.  Boosted ultraviolet photodetection of AlGaN quantum-disk nanowires via rational surface passivation , 2021, Journal of Physics D: Applied Physics.

[5]  Muhammad Hunain Memon,et al.  Bidirectional photocurrent in p–n heterojunction nanowires , 2021, Nature Electronics.

[6]  Weihua Tang,et al.  High Sensitive and Stable Solution-Processed All Inorganic Self-powered Solar-blind Photodetector based on CuMO2/Ga2O3 pn heterojunction , 2020 .

[7]  D. Guo,et al.  Vertical α/β-Ga2O3 phase junction nanorods array with graphene-silver nanowire hybrid conductive electrode for high-performance self-powered solar-blind photodetectors , 2020 .

[8]  D. Guo,et al.  Systematic investigation of the growth kinetics of β-Ga2O3 epilayer by plasma enhanced chemical vapor deposition , 2020 .

[9]  Lang Chen,et al.  Recent progress on the electronic structure, defect, and doping properties of Ga2O3 , 2020, APL Materials.

[10]  Linpeng Dong,et al.  The further investigation of N-doped β-Ga2O3 thin films with native defects for Schottky-barrier diode , 2020 .

[11]  Zhenping Wu,et al.  Review of Ga2O3-based optoelectronic devices , 2019 .

[12]  C. Shan,et al.  3D Solar‐Blind Ga2O3 Photodetector Array Realized Via Origami Method , 2019, Advanced Functional Materials.

[13]  Weihua Tang,et al.  Ultrasensitive, Superhigh Signal-to-Noise Ratio, Self-Powered Solar-Blind Photodetector Based on n-Ga2O3/p-CuSCN Core-Shell Microwire Heterojunction. , 2019, ACS applied materials & interfaces.

[14]  Weihua Tang,et al.  α-Ga2O3 Nanorod Array–Cu2O Microsphere p–n Junctions for Self-Powered Spectrum-Distinguishable Photodetectors , 2019, ACS Applied Nano Materials.

[15]  Wei Zheng,et al.  Ultrahigh EQE (15%) Solar‐Blind UV Photovoltaic Detector with Organic–Inorganic Heterojunction via Dual Built‐In Fields Enhanced Photogenerated Carrier Separation Efficiency Mechanism , 2019, Advanced Functional Materials.

[16]  Weihua Tang,et al.  Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films , 2016 .

[17]  Weihua Tang,et al.  Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors , 2014 .

[18]  Shweta Jagtap,et al.  Evaluation of ZnO nanoparticles and study of ZnO–TiO2 composites for lead free humidity sensors , 2013 .

[19]  D. Basak,et al.  Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection. , 2011, Nanoscale.

[20]  M. Hong,et al.  A plasma sputtering decoration route to producing thickness-tunable ZnO/ TiO2 core/shell nanorod arrays , 2009, Nanotechnology.

[21]  J. Lian,et al.  IR and XPS investigation of visible-light photocatalysis—Nitrogen-carbon-doped TiO 2 film , 2006 .

[22]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[23]  J. P. Remeika,et al.  Bond Lengths in the α‐Ga2O3 Structure and the High‐Pressure Phase of Ga2−xFexO3 , 1967 .