trans-Complementation of HBV rtM204I mutant replication by HBV wild-type polymerase.

[1]  H. Isom,et al.  Hepatitis B virus (HBV)-specific short hairpin RNA is capable of reducing the formation of HBV covalently closed circular (CCC) DNA but has no effect on established CCC DNA in vitro. , 2009, The Journal of general virology.

[2]  Jianming Hu,et al.  Reverse Transcriptase- and RNA Packaging Signal-Dependent Incorporation of APOBEC3G into Hepatitis B Virus Nucleocapsids , 2008, Journal of Virology.

[3]  H. Tillmann,et al.  Telbivudine versus lamivudine in patients with chronic hepatitis B. , 2008, The New England journal of medicine.

[4]  S. Mauss,et al.  Treatment of chronic hepatitis B and the implications of viral resistance to therapy , 2008, Expert review of anti-infective therapy.

[5]  G. Liss,et al.  Telbivudine versus Lamivudine in Patients with Chronic Hepatitis B , 2008 .

[6]  Jianming Hu,et al.  Formation of Hepatitis B Virus Covalently Closed Circular DNA: Removal of Genome-Linked Protein , 2007, Journal of Virology.

[7]  F. Itoh,et al.  Fatal liver failure caused by reactivation of lamivudine-resistant hepatitis B virus: a case report. , 2007, World journal of gastroenterology.

[8]  H. Isom,et al.  In Vitro Study of the Effects of Precore and Lamivudine-Resistant Mutations on Hepatitis B Virus Replication , 2007, Journal of Virology.

[9]  J. Tavis,et al.  The Duck Hepatitis B Virus Reverse Transcriptase Functions as a Full-length Monomer* , 2006, Journal of Biological Chemistry.

[10]  H. Lee,et al.  Increased risk of adefovir resistance in patients with lamivudine‐resistant chronic hepatitis B after 48 weeks of adefovir dipivoxil monotherapy , 2006, Hepatology.

[11]  A. Cross,et al.  A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. , 2006, The New England journal of medicine.

[12]  J. Pawlotsky,et al.  Dynamics of Hepatitis B Virus Resistance to Lamivudine , 2006, Journal of Virology.

[13]  S. Litwin,et al.  The competing roles of virus replication and hepatocyte death rates in the emergence of drug-resistant mutants: theoretical considerations. , 2005, Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology.

[14]  D. Toft,et al.  Requirement of Heat Shock Protein 90 for Human Hepatitis B Virus Reverse Transcriptase Function , 2004, Journal of Virology.

[15]  M. Bouchard,et al.  The Enigmatic X Gene of Hepatitis B Virus , 2004, Journal of Virology.

[16]  Ching-lung Lai,et al.  Four years of lamivudine treatment in Chinese patients with chronic hepatitis B , 2004, Journal of gastroenterology and hepatology.

[17]  T. Mine,et al.  Fatal liver failure due to reactivation of lamivudine-resistant HBV mutant. , 2004, World journal of gastroenterology.

[18]  Y. Wang,et al.  Evolution of wild type and mutants of the YMDD motif of hepatitis B virus polymerase during lamivudine therapy , 2003, Journal of gastroenterology and hepatology.

[19]  Ching-Lung Lai,et al.  Prevalence and clinical correlates of YMDD variants during lamivudine therapy for patients with chronic hepatitis B. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[20]  E. Cable,et al.  Comparison of Anti-Hepatitis B Virus Activities of Lamivudine and Clevudine by a Quantitative Assay , 2003, Antimicrobial Agents and Chemotherapy.

[21]  J. Barnard,et al.  Kinetic Analysis of Wild-Type and YMDD Mutant Hepatitis B Virus Polymerases and Effects of Deoxyribonucleotide Concentrations on Polymerase Activity , 2002, Antimicrobial Agents and Chemotherapy.

[22]  J.-H. Wang,et al.  Fatal Hepatic Failure After Emergence of the Hepatitis B Virus Mutant During Lamivudine Therapy in a Patient with Liver Cirrhosis , 2002, Scandinavian journal of gastroenterology.

[23]  J. Chi,et al.  Fatal submassive hepatic necrosis associated with tyrosine-methionine-aspartate-aspartate-motif mutation of hepatitis B virus after long-term lamivudine therapy. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[24]  T. Santantonio,et al.  Long-term follow-up of patients with anti-HBe/HBV DNA-positive chronic hepatitis B treated for 12 months with lamivudine. , 2000, Journal of hepatology.

[25]  C. Gibbs,et al.  Fulminant hepatic failure resulting from lamivudine-resistant hepatitis B virus in a renal transplant recipient: durable response after orthotopic liver transplantation on adefovir dipivoxil and hepatitis B immune globulin. , 1999, Transplantation.

[26]  E. Schiff,et al.  Lamivudine as initial treatment for chronic hepatitis B in the United States. , 1999, The New England journal of medicine.

[27]  R. D. de Man,et al.  [Chronic hepatitis-b-virus infections: new options for antiviral therapy]. , 1999, Nederlandsch tijdschrift voor geneeskunde.

[28]  C. Chu,et al.  Acute exacerbation and hepatitis B virus clearance after emergence of YMDD motif mutation during lamivudine therapy , 1999, Hepatology.

[29]  D. Faulds,et al.  Lamivudine , 1999, Drugs.

[30]  Y. Shiratori,et al.  YMDD motif in hepatitis B virus DNA polymerase influences on replication and lamivudine resistance: A study by in vitrofull‐length viral DNA transfection , 1999, Hepatology.

[31]  D. Pillay,et al.  Analysis of Hepatitis B Virus Quasispecies Changes during Emergence and Reversion of Lamivudine Resistance in Liver Transplantation , 1999, Antiviral therapy.

[32]  H. Isom,et al.  Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus , 1998, Hepatology.

[33]  J. Tavis,et al.  The Duck Hepatitis B Virus Polymerase Is Activated by Its RNA Packaging Signal, ɛ , 1998, Journal of Virology.

[34]  K. Walters,et al.  Identification and characterization of mutations in hepatitis B virus resistant to lamivudine , 1998 .

[35]  K. Chayama,et al.  Emergence and takeover of YMDD motif mutant hepatitis B virus during long‐term lamivudine therapy and re‐takeover by wild type after cessation of therapy , 1998, Hepatology.

[36]  Y. Cheng,et al.  Role of additional mutations outside the YMDD motif of hepatitis B virus polymerase in L(-)SddC (3TC) resistance. , 1998, Biochemical pharmacology.

[37]  J. Wands,et al.  Hepatitis B virus mutants associated with 3TC and famciclovir administration are replication defective , 1998, Hepatology.

[38]  K. Walters,et al.  Identification and characterization of mutations in hepatitis B virus resistant to lamivudine. Lamivudine Clinical Investigation Group. , 1998, Hepatology.

[39]  R. D. de Man,et al.  Lamivudine resistance inimmunocompetent chronic hepatitis B , 1997 .

[40]  R. Lanford,et al.  Transcomplementation of nucleotide priming and reverse transcription between independently expressed TP and RT domains of the hepatitis B virus reverse transcriptase , 1997, Journal of virology.

[41]  K. Reddy,et al.  Hepatitis-B-virus resistance to lamivudine given for recurrent infection after orthotopic liver transplantation , 1997, The Lancet.

[42]  R. D. de Man,et al.  Lamivudine resistance in immunocompetent chronic hepatitis B. Incidence and patterns. , 1997, Journal of hepatology.

[43]  J. Tavis,et al.  Evidence for activation of the hepatitis B virus polymerase by binding of its RNA template , 1996, Journal of virology.

[44]  D. Ganem,et al.  Homologous and heterologous complementation of HBV and WHV capsid and polymerase functions in RNA encapsidation. , 1996, Virology.

[45]  F. Zoulim,et al.  Role of RNA in enzymatic activity of the reverse transcriptase of hepatitis B viruses , 1994, Journal of virology.

[46]  J. Pollack,et al.  Site-specific RNA binding by a hepatitis B virus reverse transcriptase initiates two distinct reactions: RNA packaging and DNA synthesis , 1994, Journal of virology.

[47]  M. Nassal,et al.  The encapsidation signal on the hepatitis B virus RNA pregenome forms a stem-loop structure that is critical for its function. , 1993, Nucleic acids research.

[48]  J. Pollack,et al.  An RNA stem-loop structure directs hepatitis B virus genomic RNA encapsidation , 1993, Journal of virology.

[49]  Y. Wang,et al.  Trans-complementation among naturally occurring deletion mutants of hepatitis B virus and integrated viral DNA for the production of viral particles with mutant genomes in hepatoma cell lines. , 1993, The Journal of general virology.

[50]  J. Pollack,et al.  cis-acting sequences required for encapsidation of duck hepatitis B virus pregenomic RNA , 1991, Journal of virology.

[51]  J. Wands,et al.  Naturally occurring missense mutation in the polymerase gene terminating hepatitis B virus replication , 1991, Journal of virology.

[52]  R. Bartenschlager,et al.  The P gene product of hepatitis B virus is required as a structural component for genomic RNA encapsidation , 1990, Journal of virology.

[53]  R. Bartenschlager,et al.  A short cis‐acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA. , 1990, The EMBO journal.

[54]  C. Chang,et al.  Encapsidation of truncated human hepatitis B virus genomes through trans-complementation of the core protein and polymerase. , 1990, Virology.

[55]  H. Varmus,et al.  Polymerase gene products of hepatitis B viruses are required for genomic RNA packaging as well as for reverse transcription , 1990, Nature.

[56]  G. Radziwill,et al.  Mutational analysis of the hepatitis B virus P gene product: domain structure and RNase H activity , 1990, Journal of virology.

[57]  R. Miller,et al.  Mutation rate of the hepadnavirus genome. , 1989, Virology.

[58]  K. Koike,et al.  Hepatitis B virus (HBV) particles are produced in a cell culture system by transient expression of transfected HBV DNA. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[59]  C C Howe,et al.  Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. , 1980, Science.