Tracking and anti-sway control for boom cranes

This paper presents an anti-sway and tracking control for harbor mobile cranes. The control objective is the sway-free transportation of the crane's load taking the commands of the crane operator into account. Based on the mathematical model linearizing and stabilizing control laws for the slewing and luffing motion are derived using the input/output linearization approach. The operator's commands are smoothened online by a trajectory generator accounting for input and state constraints. The resulting optimal control problem is solved using the model predictive control approach. The efficiency of the control concept is illustrated with experiments on an industrial harbor mobile crane.

[1]  Rush D. Robinett,et al.  Command shaping boom crane control system with nonlinear inputs , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[2]  J. D. Aplevich,et al.  Computation of time-optimal trajectories for tower cranes , 1995, Proceedings of International Conference on Control Applications.

[3]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[4]  Mark B. Milam,et al.  A new computational approach to real-time trajectory generation for constrained mechanical systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[5]  Ken'ichi Yano,et al.  Sway control of rotary crane using straight transfer transformation method considering the variation of rope length , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[6]  Rush D. Robinett,et al.  Multiple axis boom crane maneuver generation for payload swing suppression , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[7]  Ioannis Antoniadis,et al.  Payload sway suppression in rotary cranes by digital filtering of the commanded inputs , 2003 .

[8]  R. Murray,et al.  Trajectory Planning of Differentially Flat Systems with Dynamics and Inequalities , 2000 .

[9]  Oliver Sawodny,et al.  Modell-prädiktive Trajektoriengenerierung für flachheitsbasierte Folgeregelungen am Beispiel eines Hafenmobilkrans (Model-predictive Trajectory Generation for Flatness-based Nonlinear Tracking Control with Application to Boom Cranes) , 2008, Autom..

[10]  Ali H. Nayfeh,et al.  Dynamics and Control of Cranes: A Review , 2003 .

[11]  Rush D. Robinett,et al.  Command shaping control of an operator-in-the-loop boom crane , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[12]  Oliver Sawodny,et al.  An automated gantry crane as a large workspace robot , 2002 .

[13]  Kang-Zhi Liu,et al.  Anti-sway control system of a rotational crane using a nonlinear controller , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[14]  Oliver Sawodny,et al.  Control design for the rotation of crane loads for boom cranes , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[15]  G. Nicolao,et al.  Stability and Robustness of Nonlinear Receding Horizon Control , 2000 .

[16]  Stephen J. Wright,et al.  Application of Interior-Point Methods to Model Predictive Control , 1998 .

[17]  Wolfgang Beitz,et al.  Dubbel Handbook of Mechanical Engineering , 1994 .

[18]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[19]  J. Lévine,et al.  Modelling, Flatness and Simulation of a Class of Cranes , 1999 .

[20]  Ali H. Nayfeh,et al.  Control of rotary cranes using fuzzy logic , 2003 .

[21]  Rush D. Robinett,et al.  Generating swing-suppressed maneuvers for crane systems with rate saturation , 2003, IEEE Trans. Control. Syst. Technol..

[22]  H. Fujikawa,et al.  The application of fuzzy theory for a rotary crane control , 1988, Proceedings.14 Annual Conference of Industrial Electronics Society.

[23]  Hamid A. Toliyat,et al.  An efficient processor-based online generation of time-optimal trajectories , 2006, IEEE Transactions on Control Systems Technology.

[24]  Oliver Sawodny,et al.  Anti-sway system for boom cranes based on an optimal control approach , 2003, Proceedings of the 2003 American Control Conference, 2003..

[25]  Knut Graichen,et al.  Feedforward Control Design for Finite-Time Transition Problems of Nonlinear Systems With Input and Output Constraints , 2008, IEEE Transactions on Automatic Control.

[26]  J. Neupert,et al.  Trajectory Tracking For Boom Cranes Using A Flatness Based Approach , 2006, 2006 SICE-ICASE International Joint Conference.

[27]  J. Neupert,et al.  Anti-sway system for boom cranes based on a model predictive control approach , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[28]  Stephen J. Wright Interior point methods for optimal control of discrete time systems , 1993 .

[29]  William E. Singhose,et al.  Manipulation with Tower Cranes Exhibiting Double-Pendulum Oscillations , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[30]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[31]  A. J. Koivo,et al.  Modeling and control of a rotary crane for swing-free transport of payloads , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[32]  R. Kondo,et al.  Anti-sway control of a rotary crane via switching feedback control , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[33]  Y. Sakawa,et al.  Optimal control of a rotary crane , 1979 .

[34]  A. Isidori Nonlinear Control Systems , 1985 .

[35]  Stephen J. Wright,et al.  Object-oriented software for quadratic programming , 2003, TOMS.

[36]  Oliver Sawodny,et al.  Trajectory Tracking for Boom Cranes Based on Nonlinear Control and Optimal Trajectory Generation , 2007, 2007 IEEE International Conference on Control Applications.

[37]  Ronald Lumia,et al.  Rapid Swing-Free Transport of Nonlinear Payloads Using Dynamic Programming , 2008 .

[38]  Ali H Nayfeh,et al.  Gain Scheduling Feedback Control of Tower Cranes with Friction Compensation , 2004 .

[39]  Ken'ichi Yano,et al.  Modeling and optimal control of a rotary crane using the straight transfer transformation method , 2007 .

[40]  B. Jerman,et al.  An investigation of slewing-crane dynamics during slewing motion—development and verification of a mathematical model , 2004 .

[41]  J. Neupert,et al.  A Nonlinear Control Strategy for Boom Cranes in Radial Direction , 2007, 2007 American Control Conference.