Distributionally robust maximum probability shortest path problem

In this study, we discuss and develop a distributionally robust joint chance-constrained optimization model and apply it for the shortest path problem under resource uncertainty. In sch a case, robust chance constraints are approximated by constraints that can be reformulated using convex programming. Since the issue we are discussing here is of the multi-resource type, the resource related to cost is deterministic; however, we consider a robust set for other resources where covariance and mean are known. Thus, the chance-constrained problem can be expressed in terms of a cone constraint. In addition, since our problem is joint chance-constrained optimization, we can use Bonferroni approximation to divide the problem into L separate problems in order to build convex approximations of distributionally robust joint chance constraints. Finally, numerical results are presented to illustrate the rigidity of the bounds and the value of the distributionally robust approach.

[1]  Panos M. Pardalos,et al.  Joint chance constrained shortest path problem with Copula theory , 2020, J. Comb. Optim..

[2]  W. Y. Szeto,et al.  A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty , 2014, Networks and Spatial Economics.

[3]  Yoshio Ohtsubo Stochastic shortest path problems with associative accumulative criteria , 2008, Appl. Math. Comput..

[4]  David Eppstein,et al.  Finding the k Shortest Paths , 1999, SIAM J. Comput..

[5]  Abdel Lisser,et al.  Distributionally Robust Stochastic Knapsack Problem , 2014, SIAM J. Optim..

[6]  Roberto Montemanni,et al.  An exact algorithm for the robust shortest path problem with interval data , 2004, Comput. Oper. Res..

[7]  Melvyn Sim,et al.  From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization , 2010, Oper. Res..

[8]  Roberto Montemanni,et al.  A branch and bound algorithm for the robust shortest path problem with interval data , 2004, Oper. Res. Lett..

[9]  Huan Xu,et al.  Distributionally robust chance constraints for non-linear uncertainties , 2014, Mathematical Programming.

[10]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[11]  Daniele Nardi,et al.  Multi‐objective exploration and search for autonomous rescue robots , 2007, J. Field Robotics.

[12]  Abdel Lisser,et al.  Chance constrained 0–1 quadratic programs using copulas , 2015, Optimization Letters.

[13]  G. Calafiore,et al.  On Distributionally Robust Chance-Constrained Linear Programs , 2006 .

[14]  Michael Poss,et al.  The Resource Constrained Shortest Path Problem with uncertain data: A robust formulation and optimal solution approach , 2019, Comput. Oper. Res..

[15]  Oleg A. Prokopyev,et al.  An approach to the distributionally robust shortest path problem , 2019, Comput. Oper. Res..

[16]  I. Olkin,et al.  Multivariate Chebyshev Inequalities , 1960 .

[17]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[18]  Ruiwei Jiang,et al.  Data-driven chance constrained stochastic program , 2015, Mathematical Programming.

[19]  Gang Yu,et al.  On the robust shortest path problem , 1998 .

[20]  Panos M. Pardalos,et al.  On the number of local minima for the multidimensional assignment problem , 2006, J. Comb. Optim..

[21]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[22]  Ruiwei Jiang,et al.  Optimized Bonferroni approximations of distributionally robust joint chance constraints , 2019, Math. Program..

[23]  Douglas R. Shier,et al.  Extended dominance and a stochastic shortest path problem , 2009, Comput. Oper. Res..

[24]  Daniel Kuhn,et al.  A distributionally robust perspective on uncertainty quantification and chance constrained programming , 2015, Mathematical Programming.

[25]  M. Teboulle,et al.  Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming , 1986 .

[26]  Hossein Soroush,et al.  Optimal paths in probabilistic networks: A case with temporary preferences , 1985, Comput. Oper. Res..

[27]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[28]  Ewa Niewiadomska-Szynkiewicz,et al.  Application of Social Network Analysis to the Investigation of Interpersonal Connections , 2012, Journal of Telecommunications and Information Technology.

[29]  M. Steenstrup Routing in communications networks , 1995 .

[30]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[31]  Matthew Brand,et al.  Stochastic Shortest Paths Via Quasi-convex Maximization , 2006, ESA.

[32]  John Skvoretz,et al.  Node centrality in weighted networks: Generalizing degree and shortest paths , 2010, Soc. Networks.

[33]  Abdel Lisser,et al.  Maximum probability shortest path problem , 2015, Discret. Appl. Math..

[34]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[35]  Daniel Kuhn,et al.  Distributionally robust joint chance constraints with second-order moment information , 2011, Mathematical Programming.

[36]  Shabbir Ahmed,et al.  On Deterministic Reformulations of Distributionally Robust Joint Chance Constrained Optimization Problems , 2018, SIAM J. Optim..

[37]  Yoshio Ohtsubo Minimizing risk models in stochastic shortest path problems , 2003, Math. Methods Oper. Res..

[38]  Weijun Xie,et al.  Relaxations and approximations of chance constrained stochastic programs , 2017 .

[39]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[40]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[41]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[42]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[43]  Cheng Wu,et al.  Robust Shortest Path Problem With Distributional Uncertainty , 2018, IEEE Transactions on Intelligent Transportation Systems.