Visualization of color anatomy and molecular fluorescence in whole-mouse cryo-imaging

We developed multi-scale, live-time interactive visualization of color image data, including microscopic whole-mouse cryo-images serving many biomedical applications. Using true-color volume rendering, we interactively, selectively enhanced anatomy using feature detection. For example, to enhance red organs (vessels, liver, etc.) and internal surfaces, we computed a red feature from R/(R+G+B) and surface features from color/gray-scale gradients, respectively. For >70GB cryo-image volumes, we developed multi-resolution visualization, which provided low-resolution rendering of an entire mouse and zooming to organs, tissues, and cells. Fusions of fluorescence and color cryo-volumes uniquely showed biodistribution of metastatic and stem cells within an anatomical context.

[1]  Benjamin Watson,et al.  Proceedings of Graphics Interface 2001 , 2001 .

[2]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[3]  Debashish Roy,et al.  Imaging system for creating 3D block-face cryo-images of whole mice , 2006, SPIE Medical Imaging.

[4]  K. Plataniotis,et al.  Color Image Processing and Applications , 2000 .

[5]  David L Wilson,et al.  Quantitative assessment of image quality enhancement due to unsharp-mask processing in x-ray fluoroscopy. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Hanspeter Pfister,et al.  Generation of transfer functions with stochastic search techniques , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[7]  Eduard Gröller,et al.  Interactive Volume Rendering based on a "Bubble Model" , 2001, Graphics Interface.

[8]  M J Ackerman,et al.  Imaging outcomes from the National Library of Medicine's Visible Human Project. , 2000, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[9]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[10]  V. Spitzer,et al.  The visible human dataset: The anatomical platform for human simulation , 1998, The Anatomical record.

[11]  David L. Wilson,et al.  An adaptive reference/test paradigm: Application to pulsed fluoroscopy perception , 1998 .

[12]  Jos B. T. M. Roerdink Multiresolution maximum intensity volume rendering by morphological adjunction pyramids , 2003, IEEE Trans. Image Process..

[13]  M J Ackerman,et al.  The Visible Human Project: a resource for education. , 1999, Academic medicine : journal of the Association of American Medical Colleges.

[14]  David L Wilson,et al.  Image quality evaluation of flat panel and image intensifier digital magnification in x-ray fluoroscopy. , 2002, Medical physics.

[15]  DEBASHISH ROY,et al.  3D Cryo‐Imaging: A Very High‐Resolution View of the Whole Mouse , 2009, Anatomical record.

[16]  David S. Ebert,et al.  Direct Volume Rendering of Photographic Volumes Using Multi-Dimensional Color-Based Transfer Functions , 2002, VisSym.

[17]  M J Ackerman,et al.  The Visible Human Project , 1998, Proc. IEEE.

[18]  Meredith Stone,et al.  Whole mouse cryo-imaging , 2008, SPIE Medical Imaging.

[19]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[20]  J. Edward Swan,et al.  Proceedings of the conference on Visualization '02 , 2001 .

[21]  David S. Ebert,et al.  Proceedings of the symposium on Data Visualisation 2002 , 2002 .

[22]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[23]  David S. Ebert,et al.  Interactive translucent volume rendering and procedural modeling , 2002, IEEE Visualization, 2002. VIS 2002..

[24]  David L Wilson,et al.  Quantitative image quality evaluation of pixel-binning in a flat-panel detector for x-ray fluoroscopy. , 2003, Medical physics.

[25]  David S. Ebert,et al.  Designing Effective Transfer Functions for Volume Rendering from Photographic Volumes , 2002, IEEE Trans. Vis. Comput. Graph..