Singularities for One-Parameter Developable Surfaces of Curves

Developable surfaces, which are important objects of study, have attracted a lot of attention from many mathematicians. In this paper, we study the geometric properties of one-parameter developable surfaces associated with regular curves. According to singularity theory, the generic singularities of these developable surfaces are classified—they are swallowtails and cuspidal edges. In addition, we give some examples of developable surfaces which have symmetric singularity models.