Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems

Abstract In this article we present a quadrature-free essentially non-oscillatory finite volume scheme of arbitrary high order of accuracy both in space and time for solving nonlinear hyperbolic systems on unstructured meshes in two and three space dimensions. For high order spatial discretization, a WENO reconstruction technique provides the reconstruction polynomials in terms of a hierarchical orthogonal polynomial basis over a reference element. The Cauchy–Kovalewski procedure applied to the reconstructed data yields for each element a space–time Taylor series for the evolution of the state and the physical fluxes. This Taylor series is then inserted into a special numerical flux across the element interfaces and is subsequently integrated analytically in space and time. Thus, the Cauchy–Kovalewski procedure provides a natural, direct and cost-efficient way to obtain a quadrature-free formulation, avoiding the expensive numerical quadrature arising usually for high order finite volume schemes in three space dimensions. We show numerical convergence results up to sixth order of accuracy in space and time for the compressible Euler equations on triangular and tetrahedral meshes in two and three space dimensions. Furthermore, various two- and three-dimensional test problems with smooth and discontinuous solutions are computed to validate the approach and to underline the non-oscillatory shock-capturing properties of the method.

[1]  Thomas Sonar,et al.  On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations : polynomial recovery, accuracy and stencil selection , 1997 .

[2]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[3]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .

[4]  R. Dyson Technique for very High Order Nonlinear Simulation and Validation , 2002 .

[5]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[6]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[7]  H. Atkins,et al.  Quadrature-Free Implementation of the Discontinuous Galerkin Method for Hyperbolic Equations , 1996 .

[8]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem Part I: General theory , 1988 .

[9]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[10]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[12]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[13]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[14]  Rosa Donat,et al.  Shock-Vortex Interactions at High Mach Numbers , 2003, J. Sci. Comput..

[15]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[16]  Claus-Dieter Munz,et al.  A Discontinuous Galerkin Scheme Based on a Space–Time Expansion. I. Inviscid Compressible Flow in One Space Dimension , 2007, J. Sci. Comput..

[17]  Zhi J. Wang,et al.  Extension of the spectral volume method to high-order boundary representation , 2006 .

[18]  H. van der Ven,et al.  Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. Part II. Efficient flux quadrature , 2002 .

[19]  Michael Dumbser,et al.  A matrix stability analysis of the carbuncle phenomenon , 2004 .

[20]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[21]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[22]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[23]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[24]  Michael Dumbser,et al.  On Source Terms and Boundary Conditions Using Arbitrary High Order Discontinuous Galerkin Schemes , 2007, Int. J. Appl. Math. Comput. Sci..

[25]  Armin Iske,et al.  ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .

[26]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[27]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[28]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[29]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[30]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[31]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[32]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[33]  Arne Taube,et al.  Arbitrary High-Order Discontinuous Galerkin Schemes for the Magnetohydrodynamic Equations , 2007, J. Sci. Comput..

[34]  Michael Dumbser,et al.  Arbitrary High Order Finite Volume Schemes on Unstructured Meshes , 2009 .

[35]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics , 1989 .

[36]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[37]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[38]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[39]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[40]  E. Toro,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .

[41]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[42]  Michael Dumbser,et al.  Arbitrary high-order finite volume schemes for seismic wave propagation on unstructured meshes in 2D and 3D , 2007 .

[43]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[44]  Jean-Marc Moschetta,et al.  A Cure for the Sonic Point Glitch , 2000 .

[45]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[46]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[47]  Gianfranco Chiocchia Chapter 4: Exact solutions to transonic and supersonic flows , 1984 .

[48]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[49]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[50]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[51]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[52]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[53]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[54]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[55]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[56]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[57]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[58]  Michael Dumbser,et al.  Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes , 2006, J. Sci. Comput..

[59]  J Vandervegt,et al.  Space–Time Discontinuous Galerkin Finite Element Method with Dynamic Grid Motion for Inviscid Compressible FlowsI. General Formulation , 2002 .

[60]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .