High-Accuracy Stable Difference Schemes for Well-Posed Initial-Value Problems
暂无分享,去创建一个
[1] E. Hille. Functional Analysis And Semi-Groups , 1948 .
[2] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[3] Difference methods for mixed boundary-value problems , 1960 .
[4] S. Foguel. A counterexample to a problem of Sz.-Nagy , 1964 .
[5] Robert McKelvey,et al. Spectral measures, generalized resolvents, and functions of positive type , 1965 .
[6] Richard S. Varga,et al. DISCRETIZATION ERRORS FOR WELL-SET CAUCHY PROBLEMS.I., , 1965 .
[7] Tosio Kato. Perturbation theory for linear operators , 1966 .
[8] Generally Unconditionally Stable Difference Operators , 1967 .
[9] Owe Axelsson,et al. A class ofA-stable methods , 1969 .
[10] B. L. Ehle. A-Stable Methods and Padé Approximations to the Exponential , 1973 .
[11] Zdenek Picel,et al. Two-parameter, arbitrary order, exponential approximations for stiff equations , 1975 .
[12] J. L. Siemieniuch. Properties of certain rational approximations toe−z , 1976 .
[13] J. Marsden,et al. Product formulas and numerical algorithms , 1978 .