Algorithms for Radon Partitions with Tolerance

Let P be a set n points in a d-dimensional space. Tverberg theorem says that, if n is at least \((k-1)(d+1)\), then P can be partitioned into k sets whose convex hulls intersect. Partitions with this property are called Tverberg partitions. A partition has tolerance t if the partition remains a Tverberg partition after removal of any set of t points from P. A tolerant Tverberg partition exists in any dimensions provided that n is sufficiently large. Let N(d, k, t) be the smallest value of n such that tolerant Tverberg partitions exist for any set of n points in \(\mathbb {R}^d\). Only few exact values of N(d, k, t) are known.

[1]  Pablo Soberón,et al.  A Generalisation of Tverberg’s Theorem , 2012, Discret. Comput. Geom..

[2]  H. Tverberg A Generalization of Radon's Theorem , 1966 .

[3]  J. Radon Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .

[4]  Charu C. Aggarwal,et al.  Theoretical Foundations and Algorithms for Outlier Ensembles , 2015, SKDD.

[5]  Jorge L. Ramírez Alfonsín Lawrence Oriented Matroids and a Problem of McMullen on Projective Equivalences of Polytopes , 2001, Eur. J. Comb..

[6]  Mark H. Overmars,et al.  On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..

[7]  Chia-Hua Ho,et al.  Recent Advances of Large-Scale Linear Classification , 2012, Proceedings of the IEEE.

[8]  S. Teng Points, spheres, and separators: a unified geometric approach to graph partitioning , 1992 .

[9]  D. G. Larman On Sets Projectively Equivalent to the Vertices of a Convex Polytope , 1972 .

[10]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[11]  Javier Marenco,et al.  On the combinatorics of the 2-class classification problem , 2017, Discret. Optim..

[12]  Hazel Everett,et al.  An optimal algorithm for the (≤ k)-levels, with applications to separation and transversal problems , 1993, SCG '93.

[13]  Richard Cole,et al.  On k-Hulls and Related Problems , 1987, SIAM J. Comput..

[14]  Pablo Soberón Equal coefficients and tolerance in coloured Tverberg partitions , 2015, Comb..

[15]  Uriel G. Rothblum,et al.  On the number of separable partitions , 2011, J. Comb. Optim..

[16]  Wolfgang Mulzer,et al.  Approximating Tverberg Points in Linear Time for Any Fixed Dimension , 2013, Discret. Comput. Geom..

[17]  H. Everett,et al.  AN OPTIMAL ALGORITHM FOR COMPUTING (≤K)-LEVELS, WITH APPLICATIONS , 1996 .

[18]  Miguel Raggi,et al.  A Note on the Tolerant Tverberg Theorem , 2017, Discret. Comput. Geom..

[19]  E. Harding The number of partitions of a set of N points in k dimensions induced by hyperplanes , 1967, Proceedings of the Edinburgh Mathematical Society.

[20]  Pablo Soberón Robust Tverberg and Colourful Carathéodory Results via Random Choice , 2018, Comb. Probab. Comput..

[21]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[22]  Wolfgang Mulzer,et al.  Algorithms for Tolerant Tverberg Partitions , 2014, Int. J. Comput. Geom. Appl..

[23]  J. Matoušek,et al.  On geometric optimization with few violated constraints , 1994, SCG '94.

[24]  Jingyu Sun,et al.  A Survey of Outlier Detection Methodologies and Their Applications , 2011, AICI.

[25]  Charu C. Aggarwal,et al.  Subspace histograms for outlier detection in linear time , 2018, Knowledge and Information Systems.

[26]  Timothy M. Chan Low-Dimensional Linear Programming with Violations , 2005, SIAM J. Comput..

[27]  Michael E. Houle,et al.  Algorithms for Weak and Wide Separation of Sets , 1993, Discret. Appl. Math..

[28]  GN Colin Applying Tverberg type theorems to geometric problems , 2007 .

[29]  David Forge,et al.  10 Points in Dimension 4 not Projectively Equivalent to the Vertices of a Convex Polytope , 2001, Eur. J. Comb..

[30]  David G. Larman,et al.  Projective Equivalences of k-neighbourly Polytopes , 2013, Graphs Comb..

[31]  Boris Aronov,et al.  Minimizing the error of linear separators on linearly inseparable data , 2012, Discret. Appl. Math..