Algorithms for Radon Partitions with Tolerance
暂无分享,去创建一个
[1] Pablo Soberón,et al. A Generalisation of Tverberg’s Theorem , 2012, Discret. Comput. Geom..
[2] H. Tverberg. A Generalization of Radon's Theorem , 1966 .
[3] J. Radon. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten , 1921 .
[4] Charu C. Aggarwal,et al. Theoretical Foundations and Algorithms for Outlier Ensembles , 2015, SKDD.
[5] Jorge L. Ramírez Alfonsín. Lawrence Oriented Matroids and a Problem of McMullen on Projective Equivalences of Polytopes , 2001, Eur. J. Comb..
[6] Mark H. Overmars,et al. On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..
[7] Chia-Hua Ho,et al. Recent Advances of Large-Scale Linear Classification , 2012, Proceedings of the IEEE.
[8] S. Teng. Points, spheres, and separators: a unified geometric approach to graph partitioning , 1992 .
[9] D. G. Larman. On Sets Projectively Equivalent to the Vertices of a Convex Polytope , 1972 .
[10] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[11] Javier Marenco,et al. On the combinatorics of the 2-class classification problem , 2017, Discret. Optim..
[12] Hazel Everett,et al. An optimal algorithm for the (≤ k)-levels, with applications to separation and transversal problems , 1993, SCG '93.
[13] Richard Cole,et al. On k-Hulls and Related Problems , 1987, SIAM J. Comput..
[14] Pablo Soberón. Equal coefficients and tolerance in coloured Tverberg partitions , 2015, Comb..
[15] Uriel G. Rothblum,et al. On the number of separable partitions , 2011, J. Comb. Optim..
[16] Wolfgang Mulzer,et al. Approximating Tverberg Points in Linear Time for Any Fixed Dimension , 2013, Discret. Comput. Geom..
[17] H. Everett,et al. AN OPTIMAL ALGORITHM FOR COMPUTING (≤K)-LEVELS, WITH APPLICATIONS , 1996 .
[18] Miguel Raggi,et al. A Note on the Tolerant Tverberg Theorem , 2017, Discret. Comput. Geom..
[19] E. Harding. The number of partitions of a set of N points in k dimensions induced by hyperplanes , 1967, Proceedings of the Edinburgh Mathematical Society.
[20] Pablo Soberón. Robust Tverberg and Colourful Carathéodory Results via Random Choice , 2018, Comb. Probab. Comput..
[21] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[22] Wolfgang Mulzer,et al. Algorithms for Tolerant Tverberg Partitions , 2014, Int. J. Comput. Geom. Appl..
[23] J. Matoušek,et al. On geometric optimization with few violated constraints , 1994, SCG '94.
[24] Jingyu Sun,et al. A Survey of Outlier Detection Methodologies and Their Applications , 2011, AICI.
[25] Charu C. Aggarwal,et al. Subspace histograms for outlier detection in linear time , 2018, Knowledge and Information Systems.
[26] Timothy M. Chan. Low-Dimensional Linear Programming with Violations , 2005, SIAM J. Comput..
[27] Michael E. Houle,et al. Algorithms for Weak and Wide Separation of Sets , 1993, Discret. Appl. Math..
[28] GN Colin. Applying Tverberg type theorems to geometric problems , 2007 .
[29] David Forge,et al. 10 Points in Dimension 4 not Projectively Equivalent to the Vertices of a Convex Polytope , 2001, Eur. J. Comb..
[30] David G. Larman,et al. Projective Equivalences of k-neighbourly Polytopes , 2013, Graphs Comb..
[31] Boris Aronov,et al. Minimizing the error of linear separators on linearly inseparable data , 2012, Discret. Appl. Math..