A Theorem of Bochner, Revisited

Many hierarchies of the theory of solitons possess symmetries which do not belong to the hierarchy itself. These symmetries are known under the various names of additional, master or conformal symmetries. They were discovered by Fokas, Fuchssteiner and Oevel [9], [10], [25], Chen, Lee and Lin [4] and Orlov and Schulman [26]. They are intimately related to the bihamiltonian nature of the equations of the theory of solitons which was pioneered in the work of Magri [23] and Gel’fand and Dorfman [11].

[1]  V. Kac,et al.  Geometric interpretation of the partition function of 2D gravity , 1991 .

[2]  I. Gel'fand,et al.  Hamiltonian operators and algebraic structures related to them , 1979 .

[3]  Edward Witten,et al.  Two-dimensional gravity and intersection theory on moduli space , 1990 .

[4]  Master symmetries and R-matrices for the Toda lattice , 1990 .

[5]  E. Laguerre,et al.  Sur la réduction en fractions continues d'une fraction qui satisfait à une équation différentielle linéaire du premier ordre dont les coefficients sont rationnels , 1885 .

[6]  Maxim Kontsevich,et al.  Intersection theory on the moduli space of curves and the matrix airy function , 1992 .

[7]  H. H. Chen,et al.  On a new hierarchy of symmetries for the Kadomtsev-Petviashvili equation , 1983 .

[8]  A. Orlov,et al.  Additional symmetries for integrable equations and conformal algebra representation , 1986 .

[9]  F. Grünbaum,et al.  The q -version of a theorem of Bochner , 1996 .

[10]  F. Magri,et al.  Differential equations in the spectral parameter, Darboux transformations and a hierarchy of master symmetries for KdV , 1991 .

[11]  F. Grünbaum,et al.  Differential equations in the spectral parameter , 1986 .

[12]  S. Bochner,et al.  Über Sturm-Liouvillesche Polynomsysteme , 1929 .

[13]  P. Moerbeke,et al.  Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials , 1995, solv-int/9706010.

[14]  Lectures on integrable systems , 1992 .

[15]  D. Gross,et al.  Nonperturbative two-dimensional quantum gravity. , 1990, Physical review letters.

[16]  Michael R. Douglas,et al.  STRINGS IN LESS THAN ONE DIMENSION , 1990 .

[17]  C. Itzykson,et al.  Addendum to the paper "Combinatorics of the modular group II: the Kontsevich integrals" , 1992 .

[18]  P. Moerbeke Integrable foundations of string theory , 1991 .

[19]  Edouard Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[20]  B. Fuchssteiner Mastersymmetries, Higher Order Time-Dependent Symmetries and Conserved Densities of Nonlinear Evolution Equations , 1983 .

[21]  B. Fuchssteiner,et al.  Explicit formulas for symmetries and conservation laws of the Kadomtsev-Petviashvili equation , 1982 .

[22]  A. Fokas,et al.  The hierarchy of the Benjamin-Ono equation , 1981 .

[23]  Franco Magri,et al.  A Simple model of the integrable Hamiltonian equation , 1978 .

[24]  E. Horozov,et al.  Toda Orbits of Laguerre-polynomials and Representations of the Virasoro Algebra , 1993 .

[25]  F. A. Grünbaum,et al.  Orthogonal polynomials satisfying differential equations: The role of the Darboux transformation , 1996 .