Sensitivity of Vadose Zone Water Fluxes to Climate Shifts in Arid Settings

In arid regions, groundwater resources are prone to depletion due to excessive water use and little recharge potential. Especially in sand dune areas, groundwater recharge is highly dependent on vadose zone properties and corresponding water fluxes. Nevertheless, vadose zone water fluxes under arid conditions are hard to determine owing to, among other reasons, deep vadose zones with generally low fluxes and only sporadic high infiltration events. In this study, we present an inverse model of infiltration experiments accounting for variable saturated nonisothermal water fluxes to estimate effective hydraulic and thermal parameters of dune sands. A subsequent scenario modeling links the results of the inverse model with projections of a global climate model until 2100. The scenario modeling clearly showed the high dependency of groundwater recharge on precipitation amounts and intensities, whereas temperature increases are only of minor importance for deep infiltration. However, simulated precipitation rates are still affected by high uncertainties in the response to the hydrological input data of the climate model. Thus, higher certainty in the prediction of precipitation pattern is a major future goal for climate modeling to constrain future groundwater management strategies in arid regions.

[1]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[2]  Fred M. Phillips,et al.  Groundwater Recharge in a Desert Environment: The Southwestern United States , 2004 .

[3]  W. Edmunds,et al.  Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/hyp.6335 Global synthesis of groundwater recharge in semiarid andaridregions , 2022 .

[4]  R. H. Brooks,et al.  Properties of Porous Media Affecting Fluid Flow , 1966 .

[5]  Ragab Ragab,et al.  Climate change and water resources management in arid and semi-arid regions : prospective and challenges for the twenty first century. , 2002 .

[6]  C. Schüth,et al.  Surface and subsurface conceptual model of an arid environment with respect to mid- and late Holocene climate changes , 2013, Environmental Earth Sciences.

[7]  Bridget R. Scanlon,et al.  Numerical Analysis of Coupled Water, Vapor, and Heat Transport in the Vadose Zone , 2005 .

[8]  A. Yair,et al.  Arid Dune Ecosystems: The Nizzana Sands in the Negev Desert , 2008 .

[9]  The Hamburg Ocean Primitive Equation Model , 2015 .

[10]  Zhongbo Yu,et al.  Simulations on soil water variation in arid regions , 2003 .

[11]  M. Claussen,et al.  The atmospheric general circulation model ECHAM-4: Model description and simulation of present-day climate , 1996 .

[12]  Johann Feichter,et al.  Transport of SF6 and 14CO2 in the atmospheric general circulation model ECHAM4 , 2000 .

[13]  Robert Horton,et al.  Soil Heat and Water Flow With a Partial Surface Mulch , 1987 .

[14]  A. Eter,et al.  Mineral Composition of Selected Soils in Saudi Arabia , 1984 .

[15]  T. Illangasekare,et al.  Temperature Dependence of Thermal Properties of Sands across a Wide Range of Temperatures (30–70°C) , 2013 .

[16]  S. Legutke,et al.  The Hamburg Atmosphere-Ocean Coupled Circulation Model ECHO-G , 2015 .

[17]  Julia Frankfurter Conceptual Models Of Flow And Transport In The Fractured Vadose Zone , 2016 .

[18]  G. Bodvarsson,et al.  Estimating recharge at Yucca Mountain, Nevada, USA: comparison of methods , 2002 .

[19]  C. Prudhomme,et al.  Climate Change and Water Resources Management in Arid and Semi-arid Regions : Prospective and Challenges for the 21 st Century , 2002 .

[20]  F. Leij,et al.  Hydrodynamic dispersion in an unsaturated dune sand , 2003 .

[21]  I. Simmers,et al.  Groundwater recharge: an overview of processes and challenges , 2002 .

[22]  U. Cubasch,et al.  Ensemble climate simulations using a fully coupled ocean–troposphere–stratosphere general circulation model , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  Alain Dassargues,et al.  Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios , 2011 .

[24]  Alexei G. Sankovski,et al.  Special report on emissions scenarios , 2000 .

[25]  Daniel Hillel,et al.  Groundwater recharge in arid regions: Review and critique of estimation methods , 1988 .

[26]  E. McDonald,et al.  Flexible Time Domain Reflectometry Probe for Deep Vadose Zone Monitoring , 2003 .

[27]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[28]  P. H. Groenevelt,et al.  A new model for the soil‐water retention curve that solves the problem of residual water contents , 2004 .

[29]  B. Scanlon,et al.  Hydrologic Processes in Deep Vadose Zones in Interdrainage Arid Environments , 2013 .

[30]  Gerrit Schoups,et al.  Soil Water Flow at Different Spatial Scales , 2006 .

[31]  E. D. Giorgi Selected Papers , 2006 .

[32]  Mohammad N. Elnesr,et al.  Spatio-Temporal Variability of Evapotranspiration over the Kingdom of Saudi Arabia , 2010 .

[33]  N. Mohindra,et al.  Scientific basis , 2005, British Dental Journal.

[34]  Stefan Finsterle,et al.  Multiphase Inverse Modeling: Review and iTOUGH2 Applications , 2004 .

[35]  Manuel Gómez,et al.  Modelling impacts of climate change on water resources in ungauged and data-scarce watersheds. Application to the Siurana catchment (NE Spain). , 2012, The Science of the total environment.

[36]  Z. Şen,et al.  Refined chloride mass‐balance method and its application in Saudi Arabia , 2006 .

[37]  S. Berkowicz,et al.  The Regional Climatic Setting , 2008 .

[38]  M. Schaap,et al.  ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions , 2001 .

[39]  M. Todd,et al.  Evidence of the dependence of groundwater resources on extreme rainfall in East Africa , 2013 .

[40]  J. Simunek,et al.  Flow rate dependence of soil hydraulic characteristics , 2001 .

[41]  Mitsuhiro Inoue,et al.  Simultaneous estimation of soil hydraulic and solute transport parameters from transient infiltration experiments , 2000 .

[42]  K. Seki,et al.  SWRC fit - a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure , 2007 .

[43]  C. Schüth,et al.  Soil column experiments to quantify vadose zone water fluxes in arid settings , 2012, Environmental Earth Sciences.

[44]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[45]  R. Horton,et al.  A Test of Coupled Soil Heat and Water Transfer Prediction under Transient Boundary Temperatures , 2008 .

[46]  Laurence Chéry,et al.  Aquifer systems management : Darcy's legacy in a world of impending water shortage , 2014 .

[47]  D. Or,et al.  A Time Domain Reflectometry Coaxial Cell for Manipulation and Monitoring of Water Content and Electrical Conductivity in Variably Saturated Porous Media , 2005 .

[48]  D. Hillel Introduction to environmental soil physics , 1982 .

[49]  P. Döll,et al.  Will groundwater ease freshwater stress under climate change? , 2009 .

[50]  E. E. Miller,et al.  The temperature dependence of isothermal moisture vs. potential characteristics of soils. , 1986 .

[51]  Impact of Preboreal to Subatlantic shifts in climate on groundwater resources on the Arabian Peninsula , 2013, Environmental Earth Sciences.

[52]  Wesley W. Wallender,et al.  Inverse modeling of large-scale spatially distributed vadose zone properties using global optimization / W06503, doi:10.1029/2003WR002706 , 2004 .

[53]  Mutasem El-Fadel,et al.  Climate change and water resources in Lebanon and the Middle East , 2002 .

[54]  M. Fayer,et al.  An automated tool for three types of saturated hydraulic conductivity laboratory measurements , 2009 .

[55]  Stefan Finsterle,et al.  Multiphase Inverse Modeling: Review and iTOUGH2 Applications , 2004 .

[56]  J. Monteith Evaporation and surface temperature , 2007 .

[57]  Torben O. Sonnenborg,et al.  Impact of climate and land use change on the hydrology of a large‐scale agricultural catchment , 2009 .

[58]  Gerrit Lohmann,et al.  Regional Climate Projections. , 2010 .

[59]  Juliet Mcmaster Surface and Subsurface , 1996 .

[60]  Ragab Ragab,et al.  SW—Soil and Water: Climate Change and Water Resources Management in Arid and Semi-arid Regions: Prospective and Challenges for the 21st Century , 2002 .

[61]  Bridget R. Scanlon,et al.  Hydrologic issues in arid, unsaturated systems and implications for contaminant transport , 1997 .

[62]  J. Šimůnek,et al.  Water and Vapor Movement with Condensation and Evaporation in a Sandy Column , 2009 .

[63]  T. Dinçer,et al.  Study of the infiltration and recharge through the sand dunes in arid zones with special reference to the stable isotopes and thermonuclear tritium , 1974 .